Modeling and Stochastic Analysis of the Single Photon Response



Rod photoreceptors have the remarkable ability to respond to a single photon. A photon absorption triggers the activation of a receptor which is subsequently amplified by the activation of only 5–10 molecules. Because of such low numbers, the activation process has to be proceed in a coordinated manner in order to generate a reproducible signal. In addition, this signal has to overcome the background noise generated by spontaneous activations and deactivation of millions of enzymatic molecules. We review here recent modeling and stochastic analysis of the molecular events underlying the single photon response and the background noise. The homogenization procedure of the rod geometry is the first step for reducing the three into one dimension, so that numerical simulations become possible and reveal the fundamental relation between proteins concentrations, biochemical rate constant, and rod geometry. The stochastic modeling is used to analyze electrophysiological recordings and to extract in vivo biochemical constants. Modeling phototransduction has evolved at the far front of cell transduction and system biology and thus the approach presented here can be applied to many transduction mechanisms.


  1. 1.
    K.-W. Yau, R. Hardie, Phototransduction motifs and variations. Cell 139, 246–264 (2009)CrossRefGoogle Scholar
  2. 2.
    Z. Song, M. Postma, S. Billings, D. Coca, R. Hardie, M. Juusola, Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr. Biol. 22(15), 1371–1380 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Fain, in Sensory Transduction (Sinauer, Sunderland, 2003)Google Scholar
  4. 4.
    V. Arshavsky, M. Burns, Photoreceptor signaling: supporting vision across a wide range of light intensities. J. Biol. Chem. 287, 1620–1626 (2012)CrossRefGoogle Scholar
  5. 5.
    D. Baylor, T. Lamb, K.-W. Yau, Responses of retinal rods to single-photons. J. Physiol. 288, 613–634 (1979)Google Scholar
  6. 6.
    G. Field, F. Rieke, Mechanisms regulating variability of the single-photon responses of mammalian rod photoreceptors. Neuron, 35, 733–747 (2002)CrossRefGoogle Scholar
  7. 7.
    F. Rieke, D. Baylor, Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J. 71, 2553–2572 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Nikonov, T. Lamb, E. Pugh Jr, The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. J. Gen. Physiol. 116, 795–824 (2000)CrossRefGoogle Scholar
  9. 9.
    D.A. Baylor, G. Matthews, K.-W. Yau, Two components of electrical dark noise in toad retinal rod outer segments. J. Physiol. 309, 591–621 (1980)CrossRefGoogle Scholar
  10. 10.
    F. Rieke, D. Baylor, Single-photon detection by rod cells of the retina. Rev. Mod. Phys. 70(3), 1027–1036 (1998)CrossRefGoogle Scholar
  11. 11.
    G. Whitlock, T. Lamb, Variablity in the time course of single photon responses from toad rods: termination of rhodopsin’s activity. Neuron 23, 337–351 (1999)CrossRefGoogle Scholar
  12. 12.
    D. Holcman, J. Korenbrot, The limit of photoreceptor sensitivity: molecular mechanism of dark noise in retinal cones. J. Gen. Physiol. 125, 641–660 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Doan, A. Mendez, P. Detwiler, J. Chen, F. Rieke, Multiple phosphorylation sites confer reproducibility of the rod’s single-photon responses. Science 13, 530–533 (2006)CrossRefGoogle Scholar
  14. 14.
    J. Reingruber, D. Holcman, The narrow escape problem in a flat cylindrical microdomain with application to diffusion in the synaptic cleft. SIAM Multiscale Model. Simul. 9, 793–816 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J. Reingruber, D. Holcman, The dynamics of phosphodiesterase activation in rods and cones. Biophys. J. 94(6), 1954–1970 (2008)CrossRefGoogle Scholar
  16. 16.
    R. Hamer, S. Nicholas, D. Tranchina, P. Liebman, T. Lamb, Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses. J. Gen. Physiol. 122, 419–444 (2003)CrossRefGoogle Scholar
  17. 17.
    D.T. Gillespie, General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J. Comp. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Reingruber, G. Fain, D. Holcman, How rods respond to single photons: key adaptations of a G-protein cascade that enable vision at the physical limit of perception. Bioessays 37(11), 1243–1252 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Reingruber, D. Holcman, Estimating the rate of cGMP hydrolysis by phosphodiesterase in photoreceptors. J. Chem. Phys. 129, 145192 (2008)CrossRefGoogle Scholar
  20. 20.
    D. Holcman, J. Korenbrot, Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of the cell structure. Biophys. J. 86, 2566–2582 (2004)CrossRefGoogle Scholar
  21. 21.
    D. Holcman, Z. Schuss, The narrow escape problem. SIAM Rev. 56(2), 213–257 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    D. Holcman, Z. Schuss, in Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications (Springer, Berlin, 2015)CrossRefMATHGoogle Scholar
  23. 23.
    S. McLaughlin, J. Brown, Diffusion of calcium ions in retinal rods. A theoretical calculation. J. Gen. Physiol. 77(4), 475–487 (1981)Google Scholar
  24. 24.
    D. Andreucci, P. Bisegna, G. Caruso, H. Hamm, E. DiBenedetto, Mathematical model of spatio-temporal dynamics of second messengers in visual transduction. Biophys. J. 85, 1358–1376 (2003)CrossRefGoogle Scholar
  25. 25.
    J. Reingruber, D. Holcman, Diffusion in narrow domains and application to phototransduction. Phys. Rev. E 79(3), 030904 (2009)Google Scholar
  26. 26.
    O. Gross, E.N. Pugh, M. Burns, Spatiotemporal cgmp dynamics in living mouse rods. Biophys. J. 102(8), 1775–1784 (2012)CrossRefGoogle Scholar
  27. 27.
    I. Leskov, V. Klenchin, J. Handy, G. Whitlock, V. Govardovskii, M. Bownds, T. Lamb, E. Pugh Jr, V. Arshavsky, The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27, 525–537 (2000)CrossRefGoogle Scholar
  28. 28.
    Y. Koutalos, K. Nakatani, K.-W. Yau, Cyclic GMP diffusion coefficient in rod photoreceptors outer segment. Biophys. J. 68, pp. 373–382 (1995)CrossRefGoogle Scholar
  29. 29.
    A. Singer, Z. Schuss, D. Holcman, B. Eisenberg, Narrow escape I. J. Stat. Phys. 122(3), 437–536 (2006)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Z. Schuss, Theory and Applications of Stochastic Differential Equations. Wiley Series in Probability and Statistics (Wiley, New York, 1980)Google Scholar
  31. 31.
    H. Carslaw, J. Jaeger, in Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1986)MATHGoogle Scholar
  32. 32.
    M.E. Burns, A. Mendez, J. Chen, D.A. Baylor, Dynamics of cyclic GMP synthesis in retinal rods. Neuron 36, 81–91 (2002)CrossRefGoogle Scholar
  33. 33.
    C. Makino, X. Wen, E. Olshevskaya, I. Peshenko, A. Savchenko, A. Dizhoor, Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice. PLoS One 7(10), e47637 (2012)Google Scholar
  34. 34.
    A. Dizhoor, E. Olshevskaya, I. Peshenko, Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase. Mol. Cell. Biochem. 334, 117–124 (2010)CrossRefGoogle Scholar
  35. 35.
    A. Mendez, M. Burns, I. Sokal, A. Dizhoor, W. Baehr, K. Palczewski, D. Baylor, J. Chen, Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc. Natl. Acad. Sci. U. S. A. 98, 9948–9953 (2001)CrossRefGoogle Scholar
  36. 36.
    E. Pugh Jr T. Lamb, Phototransduction in vertebrate rods and cones: molecular mechanism of amplification, recovery and light adaptation, in Handbook of Biological Physics, vol. 3 (Elsevier, Amsterdam, 2000), pp. 183–255Google Scholar
  37. 37.
    L. Cervetto, L. Lagnado, R. Perry, D. Robinson, P. McNaughton, Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 337, 740–743 (1989)CrossRefGoogle Scholar
  38. 38.
    J. Reingruber, J. Pahlberg, M. Woodruff, A. Sampath, G. Fain, D. Holcman, Detection of single photons by rod photoreceptors. Proc. Natl. Acad. Sci. U. S. A. 110(48), 19378–19383 (2013)CrossRefGoogle Scholar
  39. 39.
    C. Chen, M. Woodruff, F. Chen, D. Chen, G. Fain, Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J. Neurosci. 30, 1213–1220 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Woodruff, K. Janisch, I. Peshenko, A. Dizhoor, S. Tsang, G. Fain, Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors. J. Neurosci. 28, 2064–2074 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Burns, E. Pugh Jr., Rgs9 concentration matters in rod phototransduction. Biophys. J. 16, 1538–1547 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Heck, K. Hofmann, Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J. Biol. Chem. 276, 10000–10009 (2001)CrossRefGoogle Scholar
  43. 43.
    O. Gross, E.N. Pugh, M. Burns, Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 76(2), 370–382 (2012)CrossRefGoogle Scholar
  44. 44.
    R. Hamer, S. Nicholas, D. Tranchina, T. Lamb, J. Jarvinen, Toward a unified model of vertebrate rod phototransduction. Vis. Neurosci. 22, 417–436 (2005)CrossRefGoogle Scholar
  45. 45.
    G. Caruso, P. Bisegna, D. Andreucci, L. Lenoci, V. Gurevich, H. Hamm, E. DiBenedetto, Identification of key factors that reduce the variability of the single photon response. Proc. Natl. Acad. Sci. U. S. A. 108, 7804–7807 (2011)CrossRefGoogle Scholar
  46. 46.
    I. Peshenko, A. Dizhoor, Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. J. Biol. Chem. 281(33), 23830–23841 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INSERM U1024; Applied Mathematics and Computational Biology, IBENSEcole Normale SupérieureParisFrance
  2. 2.Institute for Biology École Normale SupérieureApplied Mathematics and Computational BiologyParisFrance
  3. 3.Churchill CollegeUniversity of Cambridge, Storey’s WayCambridgeUK

Personalised recommendations