Stochastic Models for Evolving Cellular Populations of Mitochondria: Disease, Development, and Ageing

  • Hanne Hoitzing
  • Iain G. Johnston
  • Nick S. Jones
Chapter

Abstract

Mitochondria are essential cellular organelles whose dysfunction is associated with ageing, cancer, mitochondrial diseases, and many other disorders. They contain their own genomes (mtDNA), of which thousands can be present in a single cell. These genomes are repeatedly replicated and degraded over time, and are prone to mutations. If the fraction of mutated genomes (heteroplasmy) exceeds a certain threshold, cellular defects can arise. The dynamics of mtDNAs over time and the accumulation of mutant genomes form a rich and vital stochastic process, the understanding of which provides important insights into disease progression. Numerous mathematical models have been constructed to provide a better understanding of how mitochondrial dysfunctions arise and, importantly, how clinical interventions can alleviate disease symptoms. For a given mean heteroplasmy, an increased variance—and thus a wider cell-to-cell heteroplasmy distribution—implies a higher probability of exceeding a given threshold value, meaning that stochastic models are essential to describe mtDNA disease. Mitochondria can undergo fusion and fission events with each other making the mitochondrial population a dynamic network that continuously changes its morphology, and allowing for the possibility of exchange of mtDNA molecules: coupled stochastic physical and genetic dynamics thus govern cellular mtDNA populations. Here, an overview is given of the kinds of stochastic mathematical models constructed describing mitochondria, their implications, and currently existing open problems.

References

  1. 1.
    W. Martin, M. Mentel, The origin of mitochondria. Nat. Educ. 3(9), 58 (2010)Google Scholar
  2. 2.
    R. Lill, B. Hoffmann, S. Molik, A.J. Pierik, N. Rietzschel, O. Stehling et al., The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta Mol. Cell Res. 1823(9), 1491–1508 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Wang, R.J. Youle, The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95 (2009)CrossRefGoogle Scholar
  4. 4.
    R. Rizzuto, D. De Stefani, A. Raffaello, C. Mammucari, Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13(9), 566–578 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Aryaman, H. Hoitzing, J.P. Burgstaller, I.G. Johnston, N.S. Jones, Mitochondrial heterogeneity, metabolic scaling and cell death. BioEssays (2017). doi:10.1002/bies201700001Google Scholar
  6. 6.
    K. Mitra, C. Wunder, B. Roysam, G. Lin, J. Lippincott-Schwartz, A hyperfused mitochondrial state achieved at G1’S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. U. S. A. 106(29), 11960–11965 (2009). doi:10.1073/pnas.0904875106CrossRefGoogle Scholar
  7. 7.
    M. Liesa, M. Palacín, A. Zorzano, Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89(3), 799–845 (2009). doi:10.1152/physrev.00030.2008CrossRefGoogle Scholar
  8. 8.
    H. Hoitzing, I.G. Johnston, N.S. Jones, What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. Bioessays 37(6), 687–700 (2015)Google Scholar
  9. 9.
    H. Chen, S. Ren, C. Clish, M. Jain, V. Mootha, J.M. McCaffery et al., Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J. Cell Biol. 211(4), 795–805 (2015)CrossRefGoogle Scholar
  10. 10.
    V.S.V. Laar, S.B. Berman, Mitochondrial dynamics in Parkinson’s disease. Exp. Neurol. 218(2), 247–256 (2009). doi:http://dx.doi.org/10.1016/j.expneurol.2009.03.019
  11. 11.
    S. Grandemange, S. Herzig, J.C. Martinou, Mitochondrial dynamics and cancer. Semin. Cancer Biol. 19(1), 50–56 (2009)CrossRefGoogle Scholar
  12. 12.
    X. Zhu, G. Perry, M.A. Smith, X. Wang, Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis. 33, S253–S262 (2013)Google Scholar
  13. 13.
    D.C. Chan, Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46(1), 265–287 (2012) doi:10.1146/annurev-genet-110410-132529CrossRefGoogle Scholar
  14. 14.
    H. Chen, D.C. Chan, Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases. Hum. Mol. Genet. 18(R2), R169–R176 (2009). doi:10.1093/hmg/ddp326MathSciNetCrossRefGoogle Scholar
  15. 15.
    I.G. Johnston, B.P. Williams, Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst. 2(2), 101–111 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Bogenhagen, D.A. Clayton, Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 11(4), 719–727 (1977)CrossRefGoogle Scholar
  17. 17.
    L. Chatre, M. Ricchetti, Prevalent coordination of mitochondrial DNA transcription and initiation of replication with the cell cycle. Nucleic Acids Res. 41(5), 3068–3078 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Alexeyev, I. Shokolenko, G. Wilson, S. LeDoux, The maintenance of mitochondrial DNA integrity - critical analysis and update. Cold Spring Harb. Perspect. Biol. 5(5), a012641 (2013)Google Scholar
  19. 19.
    I.J. Holt, A. Reyes, Human mitochondrial DNA replication. Cold Spring Harb. Perspect. Biol. 4(12), a012971 (2012)Google Scholar
  20. 20.
    G.S. Gorman, A.M. Schaefer, Y. Ng, N. Gomez, E.L. Blakely, C.L. Alston et al., Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77(5), 753–759 (2015)CrossRefGoogle Scholar
  21. 21.
    G. Attardi, M. Yoneda, A. Chomyn, Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim. Biophys. Acta Mol. Basis Dis. 1271(1), 241–248 (1995)CrossRefGoogle Scholar
  22. 22.
    L. Boulet, G. Karpati, E. Shoubridge, Distribution and threshold expression of the tRNA (Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am. J. Hum. Genet. 51(6), 1187 (1992)Google Scholar
  23. 23.
    K. Nakada, K. Inoue, T. Ono, K. Isobe, A. Ogura, Y. Goto et al., Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7(8), 934–940 (2001)CrossRefGoogle Scholar
  24. 24.
    C.T. Moraes, E.A. Schon, Detection and analysis of mitochondrial DNA and RNA in muscle by in situ hybridization and single-fiber PCR. Methods Enzymol. 264, 522–540 (1996)CrossRefGoogle Scholar
  25. 25.
    H.R. Elliott, D.C. Samuels, J.A. Eden, C.L. Relton, P.F. Chinnery, Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83(2), 254–260 (2008)CrossRefGoogle Scholar
  26. 26.
    B.A. Payne, I.J. Wilson, P. Yu-Wai-Man, J. Coxhead, D. Deehan, R. Horvath et al., Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22(2), 384–390 (2013)CrossRefGoogle Scholar
  27. 27.
    E.A. Schon, E. Bonilla, S. DiMauro, Mitochondrial DNA mutations and pathogenesis. J. Bioenerg. Biomembr. 29(2), 131–149 (1997)CrossRefGoogle Scholar
  28. 28.
    M. Bogliolo, A. Izzotti, S. De Flora, C. Carli, A. Abbondandolo, P. Degan, Detection of the4977 bp’mitochondrial DNA deletion in human atherosclerotic lesions. Mutagenesis 14(1), 77–82 (1999)CrossRefGoogle Scholar
  29. 29.
    Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, G. Attardi, Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440), 774–779 (1999)CrossRefGoogle Scholar
  30. 30.
    D.C. Wallace, Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256(5057), 628 1992Google Scholar
  31. 31.
    A. Kowald, E. Klipp, Mathematical models of mitochondrial aging and dynamics. Prog. Mol. Biol. Transl. Sci. 127, 63–92 (2014)CrossRefGoogle Scholar
  32. 32.
    A.D. De Grey, A proposed refinement of the mitochondrial free radical theory of aging. Bioessays 19(2), 161–166 (1997)CrossRefGoogle Scholar
  33. 33.
    A. Kowald, T.B. Kirkwood, Accumulation of defective mitochondria through delayed degradation of damaged organelles and its possible role in the ageing of post-mitotic and dividing cells. J. Theor. Biol. 202(2), 145–160 (2000)CrossRefGoogle Scholar
  34. 34.
    M. Yoneda, A. Chomyn, A. Martinuzzi, O. Hurko, G. Attardi, Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy. Proc. Natl. Acad. Sci. 89(23), 11164–11168 (1992)CrossRefGoogle Scholar
  35. 35.
    E.A. Shoubridge, G. Karpati, K.E. Hastings, Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell 62(1), 43–49 (1990)CrossRefGoogle Scholar
  36. 36.
    A. Kowald, T.B. Kirkwood, Transcription could be the key to the selection advantage of mitochondrial deletion mutants in aging. Proc. Natl. Acad. Sci. 111(8), 2972–2977 (2014)CrossRefGoogle Scholar
  37. 37.
    D. Harman, Free radical theory of aging: dietary implications. Am. J. Clin. Nutr. 25(8), 839–843 (1972)Google Scholar
  38. 38.
    A. Kowald, T. Kirkwood, Mitochondrial mutations, cellular instability and ageing: modelling the population dynamics of mitochondria. Mutat. Res./DNAging 295(3), 93–103 (1993)Google Scholar
  39. 39.
    A. Kowald, T. Kirkwood, A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat. Res./DNAging 316(5), 209–236 (1996)Google Scholar
  40. 40.
    C.B. Park, N.G. Larsson, Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193(5), 809–818 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Kowald, T.B. Kirkwood, Mitochondrial mutations and aging: random drift is insufficient to explain the accumulation of mitochondrial deletion mutants in short-lived animals. Aging Cell 12(4), 728–731 (2013)CrossRefGoogle Scholar
  42. 42.
    I.J. Holt, D. Speijer, T.B. Kirkwood, The road to rack and ruin: selecting deleterious mitochondrial DNA variants. Philos. Trans. R. Soc. B 369(1646), 20130451 (2014)Google Scholar
  43. 43.
    J. Elson, D. Samuels, D. Turnbull, P. Chinnery, Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68(3), 802–806 (2001)CrossRefGoogle Scholar
  44. 44.
    H.A. Coller, K. Khrapko, N.D. Bodyak, E. Nekhaeva, P. Herrero-Jimenez, W.G. Thilly, High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 28(2), 147–150 (2001)CrossRefGoogle Scholar
  45. 45.
    F.J. Miller, F.L. Rosenfeldt, C. Zhang, A.W. Linnane, P. Nagley, Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 31(11), e61–e61 (2003)CrossRefGoogle Scholar
  46. 46.
    P. Kaufmann, S. Shanske, M. Hirano, S. DiMauro, M.P. King, Y. Koga et al., Mitochondrial DNA and RNA processing in MELAS. Ann. Neurol. 40(2), 172–180 (1996)CrossRefGoogle Scholar
  47. 47.
    C.T. Moraes, E. Ricci, V. Petruzzella, S. Shanske, S. DiMauro, E. A. Schon et al., Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat. Genet. 1(5), 359–367 (1992)CrossRefGoogle Scholar
  48. 48.
    M. Tokunaga, S. Mita, T. Murakami, T. Kumamoto, M. Uchino, I. Nonaka et al., Single muscle fiber analysis of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Ann. Neurol. 35(4), 413–419 (1994)CrossRefGoogle Scholar
  49. 49.
    J.M. Shoffner, M.T. Lott, A.M. Lezza, P. Seibel, S.W. Ballinger, D.C. Wallace, Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA Lys mutation. Cell 61(6), 931–937 (1990)CrossRefGoogle Scholar
  50. 50.
    Y. Goto, I. Nonaka, S. Horai, A mutation in the tRNALeu (UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990)CrossRefGoogle Scholar
  51. 51.
    N.W. Soong, D.R. Hinton, G. Cortopassi, N. Arnheim, Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat. Genet. 2(4), 318–323 (1992)CrossRefGoogle Scholar
  52. 52.
    M. Corral-Debrinski, T. Horton, M.T. Lott, J.M. Shoffner, M.F. Beal, D.C. Wallace, Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2(4), 324–329 (1992)CrossRefGoogle Scholar
  53. 53.
    N.G. Larsson, Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 79, 683–706 (2010)CrossRefGoogle Scholar
  54. 54.
    E.J. Brierley, M.A. Johnson, R.N. Lightowlers, O.F. James, D.M. Turnbull, Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann. Neurol. 43(2), 217–223 (1998)CrossRefGoogle Scholar
  55. 55.
    J. Müller-Höcker, Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J. Neurol. Sci. 100(1), 14–21 (1990)CrossRefGoogle Scholar
  56. 56.
    D. Cottrell, P. Ince, E. Blakely, M. Johnson, P. Chinnery, M. Hanna et al., Neuropathological and histochemical changes in a multiple mitochondrial DNA deletion disorder. J. Neuropathol. Exp. Neurol. 59(7), 621–627 (2000)CrossRefGoogle Scholar
  57. 57.
    Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J. Gerontol. A Biol. Sci. Med. Sci. 62(3), 235–245 (2007)CrossRefGoogle Scholar
  58. 58.
    Z. Cao, J. Wanagat, S.H. McKiernan, J.M. Aiken, Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res. 29(21), 4502–4508 (2001)CrossRefGoogle Scholar
  59. 59.
    S.K. Poovathingal, J. Gruber, B. Halliwell, R. Gunawan, Stochastic drift in mitochondrial DNA point mutations: a novel perspective ex silico. PLoS Comput Biol. 5(11), e1000572 (2009)Google Scholar
  60. 60.
    D.A. Henderson, R.J. Boys, K.J. Krishnan, C. Lawless, D.J. Wilkinson, Bayesian emulation and calibration of a stochastic computer model of mitochondrial DNA deletions in substantia nigra neurons. J. Am. Stat. Assoc. 2014, 76–87 (2012)MathSciNetMATHGoogle Scholar
  61. 61.
    J.L. Hayashi, S. Ohta, A. Kikuchi, M. Takemitsu, Y. Goto, I. Nonaka, Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc. Natl. Acad. Sci. 88(23), 10614–10618 (1991)CrossRefGoogle Scholar
  62. 62.
    A. Chomyn, A. Martinuzzi, M. Yoneda, A. Daga, O. Hurko, D. Johns et al., MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl. Acad. Sci. 89(10), 4221–4225 (1992)CrossRefGoogle Scholar
  63. 63.
    N.J. Gross, G.S. Getz, M. Rabinowitz, Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem. 244(6), 1552–1562 (1969)Google Scholar
  64. 64.
    R. Huemer, K.D. Lee, A. Reeves, C. Bickert, Mitochondrial studies in senescent mice - II. Specific activity, buoyant density, and turnover of mitochondrial DNA. Exp. Gerontol. 6(5), 327–334 (1971)Google Scholar
  65. 65.
    H. Korr, C. Kurz, T. Seidler, D. Sommer, C. Schmitz, Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo. Braz. J. Med. Biol. Res. 31(2), 289–298 (1998)CrossRefGoogle Scholar
  66. 66.
    J.P. Burgstaller, I.G. Johnston, N.S. Jones, J. Albrechtova, T. Kolbe, C. Vogl et al., MtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. Cell Rep. 7(6), 2031–2041 (2014)CrossRefGoogle Scholar
  67. 67.
    R.W. Taylor, M.J. Barron, G.M. Borthwick, A. Gospel, P.F. Chinnery, D.C. Samuels et al., Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112(9), 1351–1360 (2003)CrossRefGoogle Scholar
  68. 68.
    A. Kowald, M. Dawson, T.B. Kirkwood, Mitochondrial mutations and ageing: can mitochondrial deletion mutants accumulate via a size based replication advantage? J. Theor. Biol. 340, 111–118 (2014)MathSciNetCrossRefGoogle Scholar
  69. 69.
    A.J. Berk, D.A. Clayton, Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J. Mol. Biol. 86(4), 801–824 (1974)CrossRefGoogle Scholar
  70. 70.
    D.A. Clayton, Replication of animal mitochondrial DNA. Cell 28(4), 693–705 (1982)CrossRefGoogle Scholar
  71. 71.
    A.M. El Zawily, M. Schwarzlaender, I. Finkemeier, I.G. Johnston, A. Benamar, Y. Cao et al., FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. Plant Physiol. 166(2), 808–828 (2014)CrossRefGoogle Scholar
  72. 72.
    V.M. Sukhorukov, D. Dikov, A.S. Reichert, M. Meyer-Hermann, Emergence of the mitochondrial reticulum from fission and fusion dynamics. PLoS Comput Biol. 8(10), e1002745 (2012)Google Scholar
  73. 73.
    I.G. Johnston, B. Gaal, R.P. das Neves, T. Enver, F.J. Iborra, N.S. Jones, Mitochondrial variability as a source of extrinsic cellular noise. PLoS Comput. Biol. 8(3), e1002416 (2012)Google Scholar
  74. 74.
    M. Schwarzländer, D.C. Logan, I.G. Johnston, N.S. Jones, A.J. Meyer, M.D. Fricker et al., Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell 24(3), 1188 (2012)Google Scholar
  75. 75.
    P.F. Chinnery, D.C. Samuels, Relaxed replication of mtDNA: a model with implications for the expression of disease. Am. J. Hum. Genet. 64(4), 1158–1165 (1999)CrossRefGoogle Scholar
  76. 76.
    G.J. Capps, D.C. Samuels, P.F. Chinnery, A model of the nuclear control of mitochondrial DNA replication. J. Theor. Biol. 221(4), 565–583 (2003)MathSciNetCrossRefGoogle Scholar
  77. 77.
    S.E. Durham, D.C. Samuels, L.M. Cree, P.F. Chinnery, Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m. 3243A → G. Am. J. Hum. Genet. 81(1), 189–195 (2007)Google Scholar
  78. 78.
    I.G. Johnston, N.S. Jones, Evolution of cell-to-cell variability in stochastic, controlled, heteroplasmic mtDNA populations. Am. J. Hum. Genet. 99(5), 1150–1162 (2016)CrossRefGoogle Scholar
  79. 79.
    Mouli PK, Twig G, Shirihai OS. Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys. J. 96(9), 3509–3518 (2009)CrossRefGoogle Scholar
  80. 80.
    P.K. Patel, O. Shirihai, K.C. Huang, Optimal dynamics for quality control in spatially distributed mitochondrial networks. PLoS Comput. Biol. 9(7), e1003108 (2013)Google Scholar
  81. 81.
    M.T. Figge, A.S. Reichert, M. Meyer-Hermann, H.D. Osiewacz, Deceleration of fusion–fission cycles improves mitochondrial quality control during aging. PLoS Comput Biol. 8(6), e1002576 (2012)Google Scholar
  82. 82.
    Z.Y. Tam, J. Gruber, B. Halliwell, R. Gunawan, Mathematical modeling of the role of mitochondrial fusion and fission in mitochondrial DNA maintenance. PLoS One 8(10), e76230 (2013)Google Scholar
  83. 83.
    D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  84. 84.
    Z.Y. Tam, J. Gruber, B. Halliwell, R. Gunawan, Context-dependent role of mitochondrial fusion-fission in clonal expansion of mtDNA mutations. PLoS Comput Biol. 11(5), e1004183 (2015)Google Scholar
  85. 85.
    G. Twig, A. Elorza, A.J. Molina, H. Mohamed, J.D. Wikstrom, G. Walzer et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27(2), 433–446 (2008)CrossRefGoogle Scholar
  86. 86.
    H.K. Rajasimha, P.F. Chinnery, D.C. Samuels, Selection against pathogenic mtDNA mutations in a stem cell population leads to the loss of the 3243A → G mutation in blood. Am. J. Hum. Genet. 82(2), 333–343 (2008)CrossRefGoogle Scholar
  87. 87.
    N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, vol. 1 (Elsevier, Amsterdam, 1992)MATHGoogle Scholar
  88. 88.
    R. Grima, P. Thomas, A.V. Straube, How accurate are the nonlinear chemical Fokker–Planck and chemical Langevin equations? J. Chem. Phys. 135(8), 084103 (2011)Google Scholar
  89. 89.
    J.B. Stewart, P.F. Chinnery, The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16(9), 530–542 (2015)CrossRefGoogle Scholar
  90. 90.
    Bratic A, Larsson NG. The role of mitochondria in aging. J. Clin. Invest. 123(3), 951–957 (2013)CrossRefGoogle Scholar
  91. 91.
    I.N. Shokolenko, L.G. Wilson, F.M. Alexeyev, Aging: a mitochondrial DNA perspective, critical analysis and an update. World J. Exp. Med. 4(4), 46–57 (2014)CrossRefGoogle Scholar
  92. 92.
    K. Khrapko, D. Turnbull, Mitochondrial DNA mutations in aging. Prog. Mol. Biol. Transl. Sci. 127, 29–62 (2014)CrossRefGoogle Scholar
  93. 93.
    P.F. Chinnery, D.C. Samuels, J. Elson, D.M. Turnbull, Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360(9342), 1323–1325 (2002)CrossRefGoogle Scholar
  94. 94.
    D.C. Wallace, D. Chalkia, Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5(11), a021220 (2013)Google Scholar
  95. 95.
    L.M. Cree, D.C. Samuels, S.C. de Sousa Lopes, H.K. Rajasimha, P. Wonnapinij, J.R. Mann et al., A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40(2), 249–254 (2008)CrossRefGoogle Scholar
  96. 96.
    H. Cenettlsr, P. McGill, Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151 (1996)CrossRefGoogle Scholar
  97. 97.
    D. Brown, D. Samuels, E. Michael, D. Turnbull, P. Chinnery, Random genetic drift determines the level of mutant mtDNA in human primary oocytes. Am. J. Hum. Genet. 68(2), 533–536 (2001)CrossRefGoogle Scholar
  98. 98.
    J.N. Wolff, D.J. White, M. Woodhams, H.E. White, N.J. Gemmell, The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates. PLoS One 6(5), e20522 (2011)Google Scholar
  99. 99.
    N. Howell, S. Halvorson, I. Kubacka, D. McCullough, L. Bindoff, D. Turnbull, Mitochondrial gene segregation in mammals: is the bottleneck always narrow? Nat. Genet. 90(1–2), 117–120 (1992)Google Scholar
  100. 100.
    L. Cao, H. Shitara, T. Horii, Y. Nagao, H. Imai, K. Abe et al., The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39(3), 386–390 (2007)CrossRefGoogle Scholar
  101. 101.
    T. Wai, D. Teoli, E.A. Shoubridge, The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40(12), 1484–1488 (2008)CrossRefGoogle Scholar
  102. 102.
    I.G. Johnston, J.P. Burgstaller, V. Havlicek, T. Kolbe, T. Rülicke, G. Brem et al., Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. Elife 4, e07464 (2015)Google Scholar
  103. 103.
    K. Csilléry, M.G. Blum, O.E. Gaggiotti, O. François, Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–418 (2010)CrossRefGoogle Scholar
  104. 104.
    I.G. Johnston, Efficient parametric inference for stochastic biological systems with measured variability. Stat. Appl. Genet. Mol. Biol. 13(3), 379–390 (2014)MathSciNetCrossRefMATHGoogle Scholar
  105. 105.
    S. Wright, Evolution and the Genetics of Population. The Theory of Gene Frequencies, vol. 2 (University of Chicago Press, Chicago, 1987)Google Scholar
  106. 106.
    M. Kimura, Solution of a process of random genetic drift with a continuous model. Proc. Natl. Acad. Sci. U. S. A. 41(3), 144–150 (1955)CrossRefMATHGoogle Scholar
  107. 107.
    I.G. Johnston, N.S. Jones, Closed-form stochastic solutions for non-equilibrium dynamics and inheritance of cellular components over many cell divisions. Proc. R. Soc. A. R. Soc. 471, 20150050 (2015)MathSciNetCrossRefMATHGoogle Scholar
  108. 108.
    J. Poulton, V. Macaulay, D. Marchington, Is the bottleneck cracked? Am. J. Hum. Genet. 62(4), 752–757 (1998)CrossRefGoogle Scholar
  109. 109.
    Solignac M, Génermont J, Monnerot M, Mounolou JC. Genetics of mitochondria in Drosophila: mtDNA inheritance in heteroplasmic strains of D. mauritiana. Mol. Gen. Genet. MGG 197(2), 183–188 (1984)Google Scholar
  110. 110.
    P. Wonnapinij, P.F. Chinnery, D.C. Samuels, Previous estimates of mitochondrial DNA mutation level variance did not account for sampling error: comparing the mtDNA genetic bottleneck in mice and humans. Am. J. Hum. Genet. 86(4), 540–550 (2010)CrossRefGoogle Scholar
  111. 111.
    C.W. Birky Jr., The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35(1), 125–148 (2001)CrossRefGoogle Scholar
  112. 112.
    P. Wonnapinij, P.F. Chinnery, D.C. Samuels, The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am. J. Hum. Genet. 83(5), 582–593 (2008)CrossRefGoogle Scholar
  113. 113.
    C. Gardiner, Stochastic Methods (Springer, Berlin, 2009)MATHGoogle Scholar
  114. 114.
    B.L. Gitschlag, C.S. Kirby, D.C. Samuels, R.D. Gangula, S.A. Mallal, M.R. Patel, Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans (2016). bioRxiv 050930Google Scholar
  115. 115.
    J.P. Burgstaller, I.G. Johnston, J. Poulton, Mitochondrial DNA disease and developmental implications for reproductive strategies. Mol. Hum. Reprod. 21(1), 11–22 (2015)CrossRefGoogle Scholar
  116. 116.
    Third scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception: 2014 update; June (2014). HFEAGoogle Scholar
  117. 117.
    Three’s company; 9 July 2016. The EconomistGoogle Scholar
  118. 118.
    A. Diot, E. Dombi, T. Lodge, C. Liao, K. Morten, J. Carver et al., Modulating mitochondrial quality in disease transmission: towards enabling mitochondrial DNA disease carriers to have healthy children. Biochem. Soc. Trans. 44, 1091–1100 (2016)CrossRefGoogle Scholar
  119. 119.
    A. Trifunovic, A. Wredenberg, M. Falkenberg, J.N. Spelbrink, A.T. Rovio, C.E. Bruder et al., Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990), 417–423 (2004)CrossRefGoogle Scholar
  120. 120.
    E.C. Røyrvik, J.P. Burgstaller, I.G. Johnston, mtDNA diversity in human populations highlights the merit of haplotype matching in gene therapies. Mol. Hum. Reprod. 22(11), 809–817 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hanne Hoitzing
    • 1
  • Iain G. Johnston
    • 2
  • Nick S. Jones
    • 1
  1. 1.Imperial College London, South Kensington CampusLondonUK
  2. 2.School of Biosciences, University of BirminghamBirminghamUK

Personalised recommendations