Advertisement

Investigation of Thermal Characteristic of Eutectic Fatty Acid/Damar Gum as a Composite Phase Change Material (CPCM)

  • Hadi FauziEmail author
  • Hendrik S. C. MetselaarEmail author
  • T. M. I Mahlia
  • Mahyar Silakhori
  • Hwai Chyuan Ong
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) has been proposed by impregnating a porous material of purified damar gum, also called Shorea javanica (SJ), to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity and thermal stability, of CPCM were measured using differential scanning calorimetry (DSC) thermal analysis, hot-disc thermal conductivity analyzer, and simultaneous thermal analyzer (STA). Moreover, a chemical reaction between fatty acid binary mixture and SJ in CPCM was evaluated by Fourier transform infra-red (FT-IR) spectrophotometer. The results of this study showed that the thermal conductivity of MA/PA/SM/SJ composite phase change material (CPCM) was improved by addition of 3 wt.% of Shorea javanica into MA/PA/SM eutectic mixture without showing a significant change in the thermophysical properties of CPCM. Moreover, the eutectic CPCM also does not show occurrence of chemical reaction between MA/PA/SM and SJ, and it has a good thermal performance and thermal stability. Therefore, the MA/PA/SM/SJ CPCM proposed in this study can be recommended as a new novelty material for thermal energy storage application.

Keywords

Thermal conductivity Thermal properties Thermal performance Thermal stability Heat storage 

Notes

Acknowledgments

The authors acknowledge the Minister of Higher Education and Faculty of Engineering, University of Malaya, through High Impact Research grant (UM.R/HIR/MOHE/ENG/21-D000021-16001).

References

  1. Al-Abidi, A. A., Bin Mat, S., Sopian, K., Sulaiman, M. Y., Lim, C. H., Th, A.: Review of thermal energy storage for air conditioning systems. Renew. Sust. Energ. Rev. 16(8), 5802–5819 (2012) http://dx.doi.org/10.1016/j.rser.2012.05.030Google Scholar
  2. Alkan, C., Sari, A.: Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol. Energy. 82(2), 118–124 (2008) http://dx.doi.org/10.1016/j.solener.2007.07.001
  3. Cabeza, L. F., Castell, A., Barreneche, C., de Gracia, A., Fernández, A. I.: Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sust. Energ. Rev. 15(3), 1675–1695 (2011) http://dx.doi.org/10.1016/j.rser.2010.11.018
  4. Fauzi, H., Metselaar, H. S. C., Mahlia, T. M. I., Silakhori, M., Nur, H.: Phase change material: optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants. Appl. Therm. Eng. 60(1–2), 261–265 (2013) http://dx.doi.org/10.1016/j.applthermaleng.2013.06.050
  5. Fauzi, H., Metselaar, H. S. C., Mahlia, T. M. I., Silakhori, M.: Thermo-physical stability of fatty acid eutectic mixtures subjected to accelerated aging for thermal energy storage (TES) application. Appl. Therm. Eng. 66(1–2), 328–334 (2014) http://dx.doi.org/10.1016/j.applthermaleng.2014.02.014
  6. Jeong, S.-G., Jeon, J., Lee, J.-H., Kim, S.: Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew. Energy. 33(12), 2599–2605 (2008) http://dx.doi.org/10.1016/j.renene.2008.02.024
  7. Karaipekli, A., Sari, A.: Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew. Energy. 33(12), 2599–2605 (2008) http://dx.doi.org/10.1016/j.renene.2008.02.024
  8. Karaipekli, A., Sarı, A., Kaygusuz, K.: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy. 32(13), 2201–2210 (2007) http://dx.doi.org/10.1016/j.renene.2006.11.011
  9. Kim, S., Drza, L.T.: High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells. 93(1), 136–142 (2009). doi:10.1016/j.solmat.2008.09.010CrossRefGoogle Scholar
  10. Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M. M., Stefanakos, E. K.: Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39(4), 285–319 (2013) http://dx.doi.org/10.1016/j.pecs.2013.02.001
  11. Nomura, T., Okinaka, N., Akiyama, T. Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. 115(2–3), 846–850 (2009) http://dx.doi.org/10.1016/j.matchemphys.2009.02.045
  12. Nomura, T., Okinaka, N., Akiyama, T.: Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant. Resour. Conserv. Recycl. 54(11), 1000–1006 (2010) http://dx.doi.org/10.1016/j.resconrec.2010.02.007
  13. Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65(0), 67–123 (2014). doi:10.1016/j.pmatsci.2014.03.005CrossRefGoogle Scholar
  14. Sari, A., Karaipekli, A.: Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27(8–9), 1271–1277 (2007) http://dx.doi.org/10.1016/j.applthermaleng.2006.11.004
  15. Sari, A., Karapekl, A., Kaygusuz, K.: Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 30(5), 464–474 (2008). doi:10.1080/15567030601003700CrossRefGoogle Scholar
  16. Setianingsih, N. (1992). Pemurinian Damar Shorea javanica dengan Menggunakan pelarut Organik dan Bahan Pemucat.Google Scholar
  17. Zalba, B., Marın, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003). doi:10.1016/s1359-4311(02)00192-8CrossRefGoogle Scholar
  18. Zhang, Z., Fang, X.: Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers. Manag. 47(3), 303–310 (2006) http://dx.doi.org/10.1016/j.enconman.2005.03.004
  19. Zhou, M., Bi, H., Lin, T.Q., Lu, X.J., Wan, D.Y., Huang, F.Q., Lin, J.H.: Heat transport enhancement of thermal energy storage material using graphene/ceramic composites. Carbon. 75(0), 314–321 (2014). doi:10.1016/j.carbon.2014.04.009CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Mechanical EngineeringUniversiti Tenaga NasionalKajangMalaysia
  3. 3.Department of Chemical EngineeringSyiah Kuala UniversityBanda AcehIndonesia

Personalised recommendations