Skip to main content

Process Simulation and Energy Consumption Analysis for CO2 Capture with Different Solvents

  • Chapter
  • First Online:
Exergy for A Better Environment and Improved Sustainability 2

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this work, a comparative study and evaluation of CO2 capture process using monoethanolamine (MEA) and diethanoamine (DEA) is reported. Ten different process configurations from a power plant are simulated and compared in terms of the total equivalent work and the reboiler duty. Process flow sheet modifications present a good performance with respect to the reduction of energy consumption. It is carried out with a 0.38–4.61% of reduction for MEA and 0.27–4.5% for DEA. Furthermore, a detailed analysis is presented to study the effect of four significant parameters in capture process, including various temperature, pressure, and concentration. This analysis presents the influence of the interaction between solvent and process, which is essential in post-combustion process design to make optimization strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron, D., Tsouris, C.: Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40(1-3), 321–348 (2005)

    Article  Google Scholar 

  • Ahn, H., Luberti, M., Liu, Z., et al.: Process configuration studies of the amine capture process for coal-fired power plants. Int. J. Greenhouse Gas Control. 16, 29–40 (2013)

    Article  Google Scholar 

  • Aroonwilas, A., Veawab, A.: Heat recovery gas absorption process. Patent No. WO 2007/107004 A1 (2007)

    Google Scholar 

  • Batteux, J., Godard, A.: Process and installation for regenerating an absorbent solution containing gaseous compounds. Patent No. US 4384875 A1 (1983)

    Google Scholar 

  • Carson, J.K., Marsh, K.N., Mather, A.E.: Enthalpy of solution of carbon dioxide in (water + monoethanolamine, or diethanolamine, or N-methyldiethanolamine) and (water + monoethanolamine+ N-methyldiethanolamine) at T = 298.15 K. J. Chem. Thermodyn. 32(9), 1285–1296 (2000)

    Article  Google Scholar 

  • Cousins, A., Wardhaugh, L.T., Feron, P.H.M.: Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Chem. Eng. Res. Des. 89(8), 1237–1251 (2011)

    Article  Google Scholar 

  • Cousins, A., Cottrell, A., Lawson, A., Huang, S., Feron, P.H.M.: Model verification and evaluation of the rich-split process modification at an Australian-based post combustion CO2 capture pilot plant. Greenhouse Gas Sci. Technol. 2, 329–345 (2012)

    Article  Google Scholar 

  • Diab, F., Provost, E., Laloué, N., et al.: Effect of the incorporation of speciation data in the modeling of CO2–DEA–H2O system. Fluid Phase Equilib. 353, 22–30 (2013)

    Article  Google Scholar 

  • Dinca, C.: Comparative analyses of primary and secondary amines for CO2 chemical process capture in a CFBC pilot installation. J. Clean Energ. Technol. 1(3), 228–233 (2013)

    Google Scholar 

  • Eisenberg, B., Johnson R.R.: Amine regeneration process. No. US 4152217 (1979)

    Google Scholar 

  • Fei, W.Y., Ai, N., Chen, J.: Capture and separation of greenhouse gas CO2 - the challenge and opportunity for separation technology. Chem. Ind. Eng. Process. 24(6), 1–4 (2005) (in Chinese).

    Google Scholar 

  • Gabrielsen, J., Michelsen, M.L., Stenby, E.H., et al.: A model for estimating CO2 solubility in aqueous alkanolamines. Ind. Eng. Chem. Res. 44(9), 3348–3354 (2005)

    Article  Google Scholar 

  • Galindo, P., Schäffer, A., Brechtel, K., et al.: Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions. Fuel. 101, 2–8 (2012)

    Article  Google Scholar 

  • Herrin, J.P.: Process sequencing for amine regeneration: U.S. Patent 4,798,910 (1989)

    Google Scholar 

  • Jones, P.D., Wigley, T.M.L.: Global warming trends. Sci. Am. 263(2), 84–91 (1990)

    Article  Google Scholar 

  • Karimi, M., Hillestad, M., Svendsen, H.F.: Investigation of intercooling effect in CO2 capture energy consumption. Energy Procedia. 4, 1601–1607 (2011)

    Article  Google Scholar 

  • Kent, R.L., Eisenberg, B.: Better data for amine treating. Hydrocarb. Process. 55(2), 87–90 (1976)

    Google Scholar 

  • Kohl, A.L., Nielsen, R.: Gas Purification. Gulf Professional Publishing, Houston (1997)

    Google Scholar 

  • Le Moullec, Y., Kanniche, M.: Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture. Int. J. Greenhouse Gas Control. 5(4), 727–740 (2011a)

    Article  Google Scholar 

  • Le Moullec, Y., Kanniche, M.: Optimization of MEA based post combustion CO2 capture process: flowsheeting and energetic integration. Energy Procedia. 4, 1303–1309 (2011b)

    Article  Google Scholar 

  • Le Moullec, Y., Neveux, T., Al Azki, A., et al.: Process modifications for solvent-based post-combustion CO2 capture. Int. J. Greenhouse Gas Control. 31, 96–112 (2014)

    Article  Google Scholar 

  • Leites, I.L., Sama, D.A., Lior, N.: The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes. Energy. 28(1), 55–97 (2003)

    Article  Google Scholar 

  • Li, H., Li, L., Nguyen, T., et al.: Characterization of piperazine /2-aminomethylpropanol for carbon dioxide capture. Energy Procedia. 37, 340–352 (2013)

    Article  Google Scholar 

  • Li, H., Frailie, P.T., Rochelle, G.T., et al.: Thermodynamic modeling of piperazine /2-aminomethylpropanol /CO2 /water. Chem. Eng. Sci. 117, 331–341 (2014)

    Article  Google Scholar 

  • Liang, Z., Gao, H., Rongwong, W., et al.: Comparative studies of stripper overhead vapor integration-based configurations for post-combustion CO2 capture. Int. J. Greenhouse Gas Control. 34, 75–84 (2015)

    Article  Google Scholar 

  • Oexmann, J., Kather, A.: Post-combustion CO2 capture in coal-fired power plants: comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and MEA. Energy Procedia. 1(1), 799–806 (2009)

    Article  Google Scholar 

  • Oyenekan, B.A., Rochelle, G.T.: Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind. Eng. Chem. Res. 45(8), 2457–2464 (2006)

    Article  Google Scholar 

  • Oyenekan, B.A., Rochelle, G.T.: Alternative stripper configurations for CO2 capture by aqueous amines. AICHE J. 53(12), 3144–3154 (2007)

    Article  Google Scholar 

  • Reddy, S., Gilmartin, J., Francuz, V.: Integrated compressor /stripper configurations and methods. Patent No. WO /2007 /075466. Fluor Technologies Corporation Fluor Technologies Corporation (2007)

    Google Scholar 

  • Rodríguez, N., Mussati, S., Scenna, N.: Optimization of post-combustion CO2 process using DEA–MDEA mixtures. Chem. Eng. Res. Des. 89(9), 1763–1773 (2011)

    Article  Google Scholar 

  • Shoeld, M.: Purification and separation of gaseous mixtures. Patent No. US 1971798 (1934)

    Google Scholar 

  • Tobiesen, F.A., Svendsen, H.F., Mejdell, T.: Modeling of blast furnace CO2 capture using amine absorbents. Ind. Eng. Chem. Res. 46(23), 7811–7819 (2007)

    Article  Google Scholar 

  • Van Wagener, D.H., Rochelle, G.T.: Stripper configurations for CO2 capture by aqueous monoethanolamine. Chem. Eng. Res. Des. 89(9), 1639–1646 (2011)

    Article  Google Scholar 

  • Van Wagener, D.H., Rochelle, G.T., Chen, E.: Modeling of pilot stripper results for CO2 capture by aqueous piperazine. Int. J. Greenhouse Gas Control. 12, 280–287 (2013)

    Article  Google Scholar 

  • Warudkar, S.S., Cox, K.R., Wong, M.S., et al.: Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: part I. High pressure strippers. Int. J. Greenhouse Gas Control. 16, 342–350 (2013)

    Article  Google Scholar 

  • Woodhouse, S., Rushfeldt, P.: Improved absorbent regeneration. Patent No. WO, 2008, 63079: A2 (2008)

    Google Scholar 

  • Zhang, Y., Chen, C.C.: Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind. Eng. Chem. Res. 50(1), 163–175 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by China Natural Science Foundation (key project No.51134017), EU FP7 Marie Curie International Research Staff Exchange Scheme (Ref: PIRSES-GA-2013-612230), and China State Key Laboratory of Chemical Engineering (key project No. SKL-ChE-12Z01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, B., Yu, Y., Chen, J. (2018). Process Simulation and Energy Consumption Analysis for CO2 Capture with Different Solvents. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 2. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62575-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62575-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62574-4

  • Online ISBN: 978-3-319-62575-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics