Skip to main content

LiBr Absorption Systems Integrated with High-Efficiency IGSG Plant

  • Chapter
  • First Online:
Book cover Exergy for A Better Environment and Improved Sustainability 1

Part of the book series: Green Energy and Technology ((GREEN))

  • 1822 Accesses

Abstract

Over the last few years, the energy demand for cooling systems is increasing; different solutions in fact have been proposed in order to minimize the energetic and environmental impact of this trend. In this direction, absorption cooling systems are recognized as a valid alternative to traditional vapor compression inverse cycles; waste heat from other systems can in fact be used as an efficient input instead of electrical energy. The opportunity to integrate LiBr absorption systems with a high-efficiency energy plant was studied; rejected heat from a municipal solid waste gasification plant integrated with solid oxide fuel cell and gas turbine, called IGSG (Integrated Gasification SOFC and GT), was in fact considered to feed absorption cooling units. Two different possible integrations of heat fluxes were investigated; variations of the most critical parameters have been studied and analyzed in order to evaluate plant features and find out critical working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach, E.: Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. Power Sources. 49(1–3), 333–348 (1994)

    Article  Google Scholar 

  • Ahrenfeldt, J., Henriksen, U., Jensen, T.K., Gøbel, B., Wiese, L., Kather, A., Egsgaard, H.: Validation of a continuous combined heat and power (CHP) operation of a two-stage biomass gasifier. J Energy Fuels. 20(6), 2672–2680 (2006)

    Article  Google Scholar 

  • Bellomare, F., Rokni, M.: Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine. Renew Energy. 55, 490–500 (2013)

    Article  Google Scholar 

  • Costamagna, P., Selimovic, A., Del Borghi, M., Agnew, G.: Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chem Eng J. 102(1), 61–69 (2004)

    Article  Google Scholar 

  • Haseli, Y., Dincer, I., Natere, G.F.: Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell. Int J Hydrog Energy. 33(20), 5811–5822 (2008)

    Article  Google Scholar 

  • Henriksen, U., Ahrenfeldt, J., Jensen, T.K., Gøbel, B., Bentzen, J.D., Hindsgaul, C., Sørensen, L.H.: The design, construction and operation of a 75 kW two-stage gasifier. Energy. 31(10–11), 1542–1553 (2006)

    Article  Google Scholar 

  • Hofmann, P.H., Schweiger, A., Fryda, L., Panopoulos, K.D., Hohenwarter, U., Bentzen, J.D., Ouweltjes, J.P., Ahrenfeldt, J., Henriksen, U., Kakaras, E.: High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas. J. Power Sources. 173(1), 357–366 (2007)

    Article  Google Scholar 

  • Holtappels, P., DeHaart, L.G.J., Stimming, U., Vinke, I.C., Mogensen, M.: Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrode. J Appl Electrochem. 29, 561–568 (1999)

    Article  Google Scholar 

  • Keegan, K.M., Khaleel, M., Chick, L.A., Recknagle, K., Simner, S.P., Diebler, J.: Analysis of a Planar Solid Oxide Fuel Cell Based Automotive Auxiliary Power Unit, SAE Technical Paper Series 2002, No. 2002-01-0413 (2002)

    Google Scholar 

  • Kim, J.W., Virkar, A.V.: The effect of anode thickness on the performance of anode – supported solid oxide fuel cell. Proc. of the Sixth Int. Symp. On SOFCs, (SOFC – VI). PV99–19, The Electrochemical Society, 830–839 (1999)

    Google Scholar 

  • Kromp, A., Leonide, A., Timmermann, H., Weber, A., Ivers-Tiffée, E.: Internal reforming kinetics in SOFC-anodes. ECS Trans. 28(11), 205–215 (2010)

    Article  Google Scholar 

  • Matsuzaki, Y., Yasuda, I.: Electrochemical oxidation of H2 and CO in a H2-H2O-CO-CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte. J Electrochem Soc. 147(5), 1630–1635 (2000)

    Article  Google Scholar 

  • Morris, M., Waldheim, L.: Energy recovery from solid waste fuels using advanced gasification technology. Waste Manag. 18(6–8), 557–564 (1998)

    Article  Google Scholar 

  • Petersen, T.F., Houbak, N., Elmegaard, B.: A zero-dimensional model of a 2nd generation planar SOFC with calibrated parameters. Int J Thermodyn. 9(4), 161–169 (2006)

    Google Scholar 

  • Prentice, G.: Electrochemical Engineering Principles. Prentice Hall International, Houston (1991)

    Google Scholar 

  • Rokni, M.: Plant characteristics of an integrated solid oxide fuel cell and a steam cycle. Energy. 35, 4691–4699 (2010)

    Article  Google Scholar 

  • Rokni, M.: Thermodynamic analysis of an integrated gasification plant with solid oxide fuel cell and steam cycle. J. Green. 2(2–3), 71–86 (2012)

    Google Scholar 

  • Rokni, M.: Thermodynamic analysis of SOFC (solid oxide fuel cell) – Stirling hybrid plants using alternative fuels. J Energy. 61, 87–97 (2013)

    Article  Google Scholar 

  • Smith, G.P.: Diagnostics for detailed kinetic modeling, In: Applied Combustion Diagnostics, Khose-Hoinghauss, K., Jeffries, J.B. (eds.), Taylor& Francis, New York, 2002, Chapter 19

    Google Scholar 

  • Smith, J.M., Van Ness, H.C., Abbott, M.M.: Introduction to Chemical Engineering Thermodynamics, 7th edn. McGraw-Hill, Boston (2005)

    Google Scholar 

  • Winnick, J.: Chemical Engineering Thermodynamics. John Wiley & Sons, New York (1997)

    Google Scholar 

  • Zhu, H., Kee, R.J.: A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. J. Power Sources. 117, 61–74 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rokni Masoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masoud, R., Filippo, B. (2018). LiBr Absorption Systems Integrated with High-Efficiency IGSG Plant. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 1. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62572-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62572-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62571-3

  • Online ISBN: 978-3-319-62572-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics