Skip to main content

Electrochemical, Energy, Exergy, and Exergoeconomic Analyses of Hybrid Photocatalytic Hydrogen Production Reactor for Cu–Cl Cycle

  • Chapter
  • First Online:
  • 1827 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The present chapter focuses on both thermoeconomic and electrochemical analyses of a hybrid photocatalytic reactor for hydrogen generation capable of substituting the electrical-driven hydrogen electrolysis subsystem of the Cu–Cl cycle. Several operating parameters, such as current density, reactor temperature, ambient temperature, and electrode distance, are varied to study their effects on hydrogen production rate, hydrogen production cost, and efficiencies. The results obtained from this study show that the voltage drops across the anolyte solution (sol 1), catholyte solution (sol 2), anode, cathode, and cation exchange membrane vary from 0.005 to 0.016 V, 0.004 to 0.013 V, 1.67 to 2.168 V, 0.18 to 0.22 V, and 0.06 to 0.19 V, respectively, with an increase in current density from 0.5 to 1.5 A/cm2. It is also observed that the hydrogen production rate and cost of hydrogen production increases from 1.28 to 1.47 L/s and 3.28 to 3.36 C$/kg, respectively, with a rise in the reactor temperature from 290 to 340 K. The energy and exergy analyses of the reactor show that the energy and exergy efficiencies of the hybrid photocatalytic hydrogen production reactor decrease from 5.74% to 4.54% and 5.11% to 4.04%, respectively, with an increase in current density.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arachchige, S.M., Brown, J., Brewer, K.J.: Photochemical hydrogen production from water using the new photocatalyst [{(bpy)2Ru(dpp)}2RhBr2](PF6)5. J. Photochem. Photobiol. A Chem. 197, 13–17 (2008)

    Article  Google Scholar 

  • Baniasadi, E., Dincer, I., Naterer, G.F.: Performance analysis of a water splitting reactor with hybrid photochemical conversion of solar energy. Int. J. Hydrog. Energy. 37, 7464–7472 (2012)

    Article  Google Scholar 

  • Brewer, K.J., Elvington, M.: Supramolecular complexes as photocatalysts for the production of hydrogen from water. Patent number. 7582584 (2009)

    Google Scholar 

  • Buehler, N., Meier, K., Reber, J.F.: Photochemical hydrogen production with cadmium sulfide suspensions. J. Phys. Chem. 88, 3261–3268 (1984)

    Article  Google Scholar 

  • Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 7th edn. McGraw-Hill, New York (2011)

    Google Scholar 

  • Chandrand, R.R., Chin, D.T.: Reactor analysis of chlor-alkali membrane cell. Electrochim. Acta. 31, 39–50 (1986)

    Article  Google Scholar 

  • Dincer, I., Rosen, M.A.: Exergy: Energy, Environment and Sustainable Development, 2nd edn. Elsevier, Oxford (2013)

    Google Scholar 

  • Elvington, M., Brown, J.R., Zigler, D.F., Brewer, K.J.: Supramolecular complexes as photo initiated electron collectors: applications in solar hydrogen production. Solar Hydrog. Nanotechnol. 6340, 1–13 (2006)

    Google Scholar 

  • Kang, H.W., Lim, S.N., Song, D., Park, S.B.: Organic-inorganic composite of g-C3N4-SrTiO3:Rh photocatalyst for improved H2 evolution under visible light irradiation. Int. J. Hydrog. Energy. 37, 11602–11610 (2012)

    Article  Google Scholar 

  • Matos, J., Marino, T., Molinari, R., García, H.: Hydrogen photo production under visible irradiation of au–TiO2 activated carbon. Appl. Catal. A Gen. 418, 263–272 (2012)

    Article  Google Scholar 

  • Parayil, S.K., Kibombo, H.S., Wua, C.M., Peng, R., Baltrusaitis, J., Koodali, R.T.: Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int. J. Hydrog. Energy. 37, 8257–8267 (2012)

    Article  Google Scholar 

  • Pérez-Larios, A., Lopez, R., Hernández-Gordillo, A., Tzompantzi, F., Gómez, R., Torres-Guerra, L.M.: Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts. Fuel. 100, 139–143 (2012)

    Article  Google Scholar 

  • Rangan, K., Arachchige, S.M., Brown, J.R., Brewer, K.J.: Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed metal supramolecular complexes, energy environment. Science. 2, 410–419 (2009)

    Google Scholar 

  • Ratlamwala, T.A.H., Dincer, I.: Experimental study of a hybrid photocatalytic hydrogen production reactor for Cu-Cl cycle. Int. J. Hydrog. Energy. 39, 20744–20753 (2014)

    Article  Google Scholar 

  • Reber, J.F., Meier, K.: Photochemical production of hydrogen with zinc sulphide suspensions. J. Phys. Chem. 88, 5903–5913 (1984)

    Article  Google Scholar 

  • Reber, J.F., Rusek, M.: Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J. Phys. Chem. 90, 824–834 (1986)

    Article  Google Scholar 

  • Richter, M.M., Brewer, K.J.: Spectroscopic, electrochemical, and spectroelectrochemical investigations of mixed-metal osmium(II)/ruthenium(II) bimetallic complexes incorporating polypyridyl bridging ligands. Inorg. Chem. 31, 1594–1598 (1992)

    Article  Google Scholar 

  • Sawyer, D.T., Sobkowiak, A., Roberts, J.L.: Electrochemistry for Chemists, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  • Schulz, M., Karnahl, M., Schwalbe, M., Vos, J.G.: The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coord. Chem. Rev. 256, 1682–1705 (2012)

    Article  Google Scholar 

  • Secnik, E.: Private communication. (2012)

    Google Scholar 

  • Wu, X., Song, Q., Jia, L., Li, Q., Yang, C., Lin, L.: Pd-gardenia-TiO2 as a photocatalyst for H2 evolution from pure water. Int. J. Hydrog. Energy. 37, 109–114 (2012)

    Article  Google Scholar 

  • Xing, C., Zhang, Y., Yan, W., Guo, L.: Band structure-controlled solid solution of cd-ZnS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy. 31, 2018–2024 (2006)

    Article  Google Scholar 

  • Zamfirescu, C., Dincer, I., Naterer, G.F.: Molecular charge transfer and quantum efficiency analyses of a photochemical reactor for hydrogen production. Int. J. Hydrog. Energy. 37, 9537–9549 (2012)

    Article  Google Scholar 

  • Zhang, J., Zhang, L., Liu, H., Sun, A., Liu, R.S.: Electrochemical Technologies for Energy Storage and Conversion. John Wiley and Sons, Europe (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Abdul Hussain Ratlamwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ratlamwala, T.A.H., Dincer, I. (2018). Electrochemical, Energy, Exergy, and Exergoeconomic Analyses of Hybrid Photocatalytic Hydrogen Production Reactor for Cu–Cl Cycle. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 1. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62572-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62572-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62571-3

  • Online ISBN: 978-3-319-62572-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics