Skip to main content

Science Mapping Tools and Applications

Abstract

We introduce the design and applications of a few influential science mapping tools, namely CiteSpace, VOSviewer, and CitNetExplorer, such that one can utilize these freely available tools to study a scientific domain of interest. CiteSpace provides a variety of metrics and indicators concerning trends and patterns in scientific literature. Many of these metrics are explained further with illustrative examples from applications of CiteSpace. CiteSpace also includes extensions that are particularly made to generate examples in the book. Three examples of systematic scientometric reviews using CiteSpace are included to illustrate relevant concepts and analytic functions.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-62543-0_3
  • Chapter length: 81 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-62543-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16
Fig. 3.17
Fig. 3.18
Fig. 3.19
Fig. 3.20
Fig. 3.21
Fig. 3.22
Fig. 3.23
Fig. 3.24
Fig. 3.25
Fig. 3.26
Fig. 3.27
Fig. 3.28
Fig. 3.29
Fig. 3.30
Fig. 3.31
Fig. 3.32
Fig. 3.33
Fig. 3.34
Fig. 3.35
Fig. 3.36
Fig. 3.37
Fig. 3.38
Fig. 3.39
Fig. 3.40
Fig. 3.41
Fig. 3.42
Fig. 3.43
Fig. 3.44
Fig. 3.45
Fig. 3.46
Fig. 3.47
Fig. 3.48
Fig. 3.49
Fig. 3.50
Fig. 3.51
Fig. 3.52
Fig. 3.53
Fig. 3.54
Fig. 3.55
Fig. 3.56
Fig. 3.57
Fig. 3.58
Fig. 3.59
Fig. 3.60
Fig. 3.61
Fig. 3.62
Fig. 3.63
Fig. 3.64
Fig. 3.65
Fig. 3.66
Fig. 3.67
Fig. 3.68
Fig. 3.69

Notes

  1. 1.

    https://clarivate.com/products/web-of-science/.

  2. 2.

    https://sci2.cns.iu.edu/user/index.php.

  3. 3.

    http://www.leydesdorff.net/software.htm.

  4. 4.

    http://www.mapequation.org/apps/AlluvialGenerator.html.

  5. 5.

    http://mirian.kisti.re.kr/km/km_pop_en.jsp.

  6. 6.

    http://cluster.cis.drexel.edu/~cchen/citespace/resources/.

References

  • Abt HA (1998) Why some papers have long citation lifetimes. Nature 395:756–757

    Google Scholar 

  • Bar-Ilan J (2008) Informetrics at the beginning of the 21st century—a review. J Informetrics 2(1):1–52

    CrossRef  Google Scholar 

  • Batagelj V (2003) Efficient algorithms for citation network analysis. arXiv:cs/0309023v1

  • Batagelj V, Mrvar A (1998) Pajek—program for large network analysis. Connections 21(2):47–57

    MATH  Google Scholar 

  • Boyack KW, Klavans R (2010) Co-citation analysis, bibliographic coupling, and direct citation: which citation approach represents the research front most accurately? J Am Soc Inform Sci Technol 61(12):2389–2404. doi:10.1002/asi.21419

  • Boyack KW, Klavans R, Börner K (2005) Mapping the backbone of science. Scientometrics 64(3):351–374

    CrossRef  Google Scholar 

  • Burt RS (1992) Structural holes: the social structure of competition. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Bush V (1945) As we may think. Atlantic Monthly 176(1):101–108

    Google Scholar 

  • Callon M, Courtial JP, Turner WA, Bauin S (1983) From translations to problematic networks—an introduction to co-word analysis. Soc Sci Inf Sci Soc 22(2):191–235

    Google Scholar 

  • Card S, Mackinlay DJ, Shneiderman B (1999) Readings in information visualization: using vision to think. Interactive technologies. Morgan Kaufmann Publisher, San Francisco, CA USA

    Google Scholar 

  • Carley KM, Hummon NP, Harty M (1993) Scientific influence—an analysis of the main path structure in the journal of conflict-resolution. Knowledge-Creation Diffus Utilization 14(4):417–447

    Google Scholar 

  • Carley S, Porter AL (2012) A forward diversity index. SCIENTOMETRICS 90(2):407–427. doi:10.1007/s11192-011-0528-1

  • Chen C (2004) Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A 101 (Suppl):5303–5310

    Google Scholar 

  • Chen C (1999) Visualising semantic spaces and author co-citation networks in digital libraries. Inf Process Manage 35(2):401–420

    CrossRef  Google Scholar 

  • Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol 57(3):359–377

    CrossRef  Google Scholar 

  • Chen C (2012) Predictive effects of structural variation on citation counts. J Am Soc Inform Sci Technol 63(3):431–449. doi:10.1002/asi.21694

    CrossRef  Google Scholar 

  • Chen C (2014) The fitness of information: quantitative assessments of critical evidence. Wiley

    Google Scholar 

  • Chen C (2017) Science mapping: a systematic review of the literature. J Data Inform Sci 2(2):1–40

    MathSciNet  CrossRef  Google Scholar 

  • Chen C, Leydesdorff L (2014) Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J Assoc Inform Sci Technol 65(2):334–351

    Google Scholar 

  • Chen C, Chen Y, Horowitz M, Hou H, Liu Z, Pellegrino D (2009) Towards an explanatory and computational theory of scientific discovery. J Informetrics 3(3):191–209

    CrossRef  Google Scholar 

  • Chen C, Ibekwe-SanJuan F, Hou J (2010) The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis. J Am Soc Inform Sci Technol 61(7):1386–1409

    CrossRef  Google Scholar 

  • Chen C, Hu Z, Liu S, Tseng H (2012) Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Exp Opin Biol Ther 12(5):593–608

    CrossRef  Google Scholar 

  • Chen C, Hu Z, Milbank J, Schultz T (2013) A visual analytic study of retracted articles in scientific literature. Journal of the American Society for Information Science and Technology 64 (2):234–253

    Google Scholar 

  • Chen C, Dubin R, Kim MC (2014a) Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin Biol Ther 14(9):1295–1317

    CrossRef  Google Scholar 

  • Chen C, Dubin R, Kim MC (2014b) Orphan drugs and rare diseases: a scientometric review (2000–2014). Exp Opin Orphan Drugs 2(7):709–724

    CrossRef  Google Scholar 

  • Cobo MJ, Lopez-Herrera AG, Herrera-Viedma E, Herrera F (2011) Science mapping software tools: review, analysis, and cooperative study among tools. J Am Soc Inform Sci Technol 62(7):1382–1402. doi:10.1002/asi.21525

    CrossRef  MATH  Google Scholar 

  • Deerwester S, Dumais ST, Landauer TK, Furnas GW, Harshman RA (1990) Indexing by latent semantic analysis. J Am Soc Inform Sci 41(6):391–407

    CrossRef  Google Scholar 

  • Egghe L (2006) Theory and practise of the g-index. Scientometrics 69(1):131–152. doi:10.1007/s11192-006-0144-7

    CrossRef  Google Scholar 

  • Garfield E (1955) Citation indexes for science: a new dimension in documentation through association of ideas. Science 122(3159):108–111

    CrossRef  Google Scholar 

  • Heer J (2007) The prefuse visualization toolkit. http://prefuse.org/

  • Heradio R, Perez-Moragoa H, Fernandez-Amorosa D, Cabrerizoa FJ, Herrera-Viedmab E (2016) A bibliometric analysis of 20 years of research on software product lines. Information and Software Technology 72:1–15. doi:10.1016/j.infsof.2015.11.004

  • Herman I, Melançon G, Marshall MS (2000) Graph visualization and navigation in information visualization: a survey. IEEE Trans Visual Comput Graph 6(1):24–44

    CrossRef  Google Scholar 

  • Hicks D, Wouters P, Waltman L, Rijcke Sd, Rafols I (2015) Bibliometrics: the Leiden Manifesto for research metrics. Nature 520(7548):429–431. doi:10.1038/520429a

    CrossRef  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci U S A 102(46):16569–16572. doi:10.1073/pnas.0507655102

    CrossRef  MATH  Google Scholar 

  • Hjørland B (2002) Epistemology and the socio-cognitive perspective in information science. J Am Soc Inform Sci Technol 53(4):257–270

    CrossRef  Google Scholar 

  • Hummon NP, Doreian P (1989) Connectivity in a citation network—the Development of DNA Theory. Soc Netw 11(1):39–63

    CrossRef  Google Scholar 

  • Johnson B, Shneiderman B (1991) Tree-maps: a space filling approach to the visualization of hierarchical information structures. IEEE Vis 91(Oct 1991):284–291

    Google Scholar 

  • Kim MC, Zhu Y, Chen C (2016) How are they different? A quantitative domain comparison of information visualization and data visualization (2000-2014). SCIENTOMETRICS 107:123

    Google Scholar 

  • Kleinberg J (2002) Bursty and hierarchical structure in streams. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, pp 91–101

    Google Scholar 

  • Leydesdorff L, Rafols I (2009) A global map of science based on the ISI subject categories. J Am Soc Inform Sci Technol 60(2):348–362

    CrossRef  Google Scholar 

  • Li Y, Radicchi F, Castellano C, Ruiz-Castillo J (2013) Quantitative evaluation of alternative field normalization procedures. J Informetrics 7(3):746–755

    CrossRef  Google Scholar 

  • Liu JS, Kuan C-H (2015) A new approach for main path analysis: Decay in knowledge diffusion. J Assoc Inform Sci Technol. doi:10.1002/asi.23384

    Google Scholar 

  • Liu JS, Lu LYY (2012) An integrated approach for main path analysis: Development of the Hirsch Index as an example. J Am Soc Inform Sci Technol 63(3):528–542

    MathSciNet  CrossRef  Google Scholar 

  • Lucio-Arias D, Leydesdorff L (2008) Main-path analysis and path-dependent transitions in HistCite-based historiograms. J Am Soc Inform Sci Technol 59(12):1948–1962

    CrossRef  Google Scholar 

  • Mingers J, Leydesdorff L (2015) A review of theory and practice in scientometrics. Eur J Oper Res 246(1):1–19

    CrossRef  MATH  Google Scholar 

  • Morris SA, Yen G, Wu Z, Asnake B (2003) Timeline visualization of research fronts. J Am Soc Inform Sci Technol 55(5):413–422

    CrossRef  Google Scholar 

  • Price DD (1965) Networks of scientific papers. Science 149:510–515

    CrossRef  Google Scholar 

  • Quirin A, Cordon O, Santamaria J, Vargas-Quesada B, Moya-Anegon F (2008) A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time. Inform Process Manag 44(4):1611–1623. doi:10.1016/j.ipm.2007.09.005

    CrossRef  Google Scholar 

  • Radicchi F, Castellano C (2013) Analysis of bibliometric indicators for individual scholars in a large data set. SCIENTOMETRICS 97(3):627–637. doi:10.1007/s11192-013-1027-3

  • Radicchi F, Fortunato S, Castellano C (2008) Universality of citation distributions: toward an objective measure of scientific impact. PNAS 105(45):17268–17272

    CrossRef  Google Scholar 

  • Rorissa A, Yuan X (2012) Visualizing and mapping the intellectual structure of information retrieval. Information Processing & Management 48(1):120–135. doi:10.1016/j.ipm.2011.03.004

  • Schvaneveldt RW (ed) (1990) Pathfinder associative networks: studies in knowledge organization. Ablex series in computational sciences. Ablex Publishing Corporations, Norwood, New Jersey

    Google Scholar 

  • Shneider AM (2009) Four stages of a scientific discipline: four types of scientists. Trends Biochem Sci 34(5):217–223

    CrossRef  Google Scholar 

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualization. In: IEEE workshop on visual language, Boulder, CO, Sept 3–6, 1996. IEEE Computer Society Press, pp 336–343

    Google Scholar 

  • Skupin A (2014) Making a Mark: a computational and visual analysis of one researcher’s intellectual domain. International Journal of Geographical Information Science 28(6):1209–1232. doi:10.1080/13658816.2014.906040

  • Smalheiser NR, Swanson DR (1998) Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses. Comput Meth Programs Biomed 57(3):149–153

    CrossRef  Google Scholar 

  • Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inform Sci 24:265–269

    CrossRef  Google Scholar 

  • Tabah AN (1999) Literature dynamics: studies on growth, diffusion, and epidemics. Annu Rev Inform Sci Technol 34:249–286

    Google Scholar 

  • Thelwall M, Haustein S, Larivière V, Sugimoto CR (2013) Do altmetrics work? Twitter and ten other social web services. PLoS ONE 8(5):e64841

    CrossRef  Google Scholar 

  • Thomas JJ, Cook AK (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE Press

    Google Scholar 

  • Tibély G, Pollner P, Vicsek T, Palla G (2013) Extracting tag-hierarchies. PLoS ONE 8(12):e84133

    CrossRef  Google Scholar 

  • Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    CrossRef  Google Scholar 

  • Van Eck NJ, Waltman L (2014) CitNetExplorer: a new software tool for analyzing and visualizing citation networks. J Informetrics 8(4):802–823

    CrossRef  Google Scholar 

  • van Raan A (2000) On growth, ageing, and fractal differentiation of science. Scientometrics 47(2):347–362

    CrossRef  Google Scholar 

  • Waltman L (2016) A review of the literature on citation impact indicators. J Informetr 10(2):365–391. doi:10.1016/j.joi.2016.02.007

    MathSciNet  CrossRef  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    CrossRef  MATH  Google Scholar 

  • White HD, McCain KW (1997) Visualization of Literatures. Annu Rev Inform Sci Technol 32:99–168

    Google Scholar 

  • White HD, McCain KW (1998) Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J Am Soc Inform Sci 49(4):327–356

    Google Scholar 

  • Yan E (2014) Research dynamics: Measuring the continuity and popularity of research topics. Journal of Informetrics 8(1):98–110. doi:10.1016/j.joi.2013.10.010

  • Zhu Q, Kong X, Hong S, Li J, He Z (2015) Global ontology research progress: a bibliometric analysis. Aslib Journal of Information Management 67(1):27–54. doi:10.1108/AJIM-05-2014-0061

  • Zupic I (2015) Bibliometric methods in management and organization. Organizational Research Methods 18(3):429–472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C., Song, M. (2017). Science Mapping Tools and Applications. In: Representing Scientific Knowledge. Springer, Cham. https://doi.org/10.1007/978-3-319-62543-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62543-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62541-6

  • Online ISBN: 978-3-319-62543-0

  • eBook Packages: Computer ScienceComputer Science (R0)