Personal Robot Assistants for Elderly Care: An Overview

  • Ester Martinez-MartinEmail author
  • Angel P. del Pobil
Part of the Intelligent Systems Reference Library book series (ISRL, volume 132)


The world’s population is ageing and, with that, new social issues arise, especially in terms of healthcare and daily activities. Despite the preference for human professional healthcare, the new socio-economic situation and the decrease in care personnel make necessary to give support to the process of caregiving. In this context, Robotics can be considered as a solution since it can provide healthcare support, help in performing daily tasks, and/or increase the feeling of autonomony and self management. This paper is an overview of the existing robotic technologies for elderly care, analysing their benefits for the elderly.



This work has been partially funded by Ministerio de Economía y Competitividad (DPI2015-69041- R), by Generalitat Valenciana (PROMETEOII/2014/028), and by Jaume-I University (P1-1B2014-52).


  1. 1.
    Why population aging matters: a global perspective. National Institute on Aging. (2007)
  2. 2.
    Global health and aging. World Health Organization. (2011)
  3. 3.
    Mitzner, T., Chen, T., Kemp, C., Rogers, W.: Identifying the potential for robotics to assist older adults in different living environments. Int. J. Soc. Robotics (2013)Google Scholar
  4. 4.
    Diaz, M., Saez-Pons, J., Heerink, M., Angulo, C.: Emotional factors in robot-based assistive services for elderly at home. In: 22nd IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 711–716. Gyeongju, Korea (2013)Google Scholar
  5. 5.
    Dautenhahn, K., Woods, S., Kaouri, C., Walters, M., Koay, K., Werry, I.: What is a robot companion-friend, assistant or butler? In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1192–1197. Alberta, Canada (2005)Google Scholar
  6. 6.
    Huber, A., Lammer, L., Weiss, A., Vincze, M.: Designing adaptive roles for socially assistive robots: a new method to reduce technological determinism and role stereotypes. J. Hum. Robot Interact. 3, 100–115 (2014)Google Scholar
  7. 7.
    Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8, 94–103 (2009)CrossRefGoogle Scholar
  8. 8.
    Bhattacharyya, S., Konar, A., Tibarewala, D.: A differential evolution based energy trajectory planner for artificial limb control using motor imagery EEG signal. Biomed. Signal Process. Control 11, 107–113 (2014). doi: 10.1016/j.bspc.2014.03.001
  9. 9.
    Juhnke, D.L., Beck, J.P., Jeyapalina, S., Aschoff, H.H.: Fifteen years of experience with integral-leg-prosthesis: cohort study of artificial limb attachment system. J. Rehabil. Res. Dev. 52(4), 407–420 (2015). doi: 10.1682/jrrd.2014.11.0280
  10. 10.
    Sinha, R., van den Heuvel, W.J., Arokiasamy, P.: Adjustments to amputation and an artificial limb in lower limb amputees. Prosthet. Orthot Int. 38(2), 115–121 (2014). doi: 10.1177/0309364613489332
  11. 11.
    Choi, H., Park, J.O., Ko, S.Y., Park, S.: Deflection analysis of a robotic bed on the applied loads and its postures for a heavy-ion therapeutic system. In: 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, pp. 343–350. Springer (2016). doi: 10.1007/978-981-10-1721-6_37
  12. 12.
    Wang, C., Savkin, A.V., Clout, R., Nguyen, H.T.: An intelligent robotic hospital bed for safe transportation of critical neurosurgery patients along crowded hospital corridors. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 744–754 (2015). doi: 10.1109/tnsre.2014.2347377
  13. 13.
    Gomi, T., Griffith, A.: Developing intelligent wheelchairs for the handicapped, vol. 1458, pp. 150–178. Springer, Berlin, Germany (1998)Google Scholar
  14. 14.
    Shiomi, M., Iio, T., Kamei, K., Sharma, C., Hagita, N.: Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in japan. PLoS ONE 10 (2015)Google Scholar
  15. 15.
    Anam, K., Al-Jumaily, A.: Active exoskeleton control systems: state of the art. In: International Symposium on Robotics and Intelligent Sensors (IRIS), pp. 988–994 (2012)Google Scholar
  16. 16.
    Benson, I., Hart, K., Tussler, D., van Middendorp, J.J.: Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin. Rehabil. 30(1), 73–84 (2015). doi: 10.1177/0269215515575166
  17. 17.
    Dollar, A., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Robotics 24, 144–158 (2008)Google Scholar
  18. 18.
    Kazerooni, H.: Exoskeletons for human power augmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Alberta, Canada (2005)Google Scholar
  19. 19.
    Yan, T., Cempini, M., Oddo, C., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics Auton. Syst. 64, 120–136 (2015)Google Scholar
  20. 20.
    Feil-Seifer, D., Mataric, M.: Socially assistive robotics. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/icorr.2005.1501143
  21. 21.
    Wada, K., Shibata, T., Saito, T., Tanie, K.: Effects of robot assisted activity to elderly people who stay at a health service facility for the aged. In: 3 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2847–2852. Las Vegas, Nevada (2003)Google Scholar
  22. 22.
    Sabanovic, S., Bennett, C., Chang, W.L., Huber, L.: Paro robot affects diverse interaction modalities in group sensory therapy for older adults with dementia. In: IEEE International Conference on Rehabilitation Robotics. Seattle, USA (2013)Google Scholar
  23. 23.
    Wada, K., Shibata, T.: Social and physiological influences of living with seal robots in an elderly care house for two months. In: The 6th International Conference of the International Society for Gerontechnology. Pisa, Italy (2008)Google Scholar
  24. 24.
    Niemela, M., Ylikauppila, M., Talja, H.: Long-term use of paro the therapy robot seal the caregiver perspective. In: 10th World Conference Of Gerontechnology 2016 (ISG 2016). Nice, France (2016)Google Scholar
  25. 25.
    Nakashima, T., Fukutome, G., Ishii, N.: Healing effects of pet robots at an elderly-care facility. In: 9th IEEE/ACIS International Conference on Computer and Information Science, pp. 407–412 (2010)Google Scholar
  26. 26.
    Mitchell, G., McCormack, B., McCance, T.: Therapeutic use of dolls for people living with dementia: a critical review of the literature. Dementia 15, 976–1001 (2016)Google Scholar
  27. 27.
    Turner, F., Shepherd, M.: Doll therapy in dementia care: a review of current literature. Cumminicare 1 (2014)Google Scholar
  28. 28.
    Yamamoto, H., Miyazaki, H., Tsuzuki, T., Kojima, Y.: A spoken dialogue robot, named wonder, to aid senior citizens who living alone with communication. J. Robotics Mechatron. 14, 54–59 (2002)Google Scholar
  29. 29.
  30. 30.
    Tanaka, M., Ishii, A., Yamano, E., Ogikubo, H., Okazaki, M., Kamimura, K., Konishi, Y., Emoto, S., Watanable, Y.: Effect of a human-type communication robot on cognitive function in elderly women living alone. Med. Sci. Monit. 18, CR550–557 (2012)Google Scholar
  31. 31.
    Furuta, Y., Kanoh, M., Shimizu, T., Shimizu, M., Nakamura, T.: Subjective evaluation of use of babyloid for doll therapy. In: IEEE World Congress on Computational Intelligence. Brisbane, Australia (2012)Google Scholar
  32. 32.
    Mario project. (2015–2018)
  33. 33.
    Casey, D., Felzmann, H., Pegman, G., Kouroupetroglou, C., Murphy, K., Koumpis, A., Whelan, S.: What people with dementia want: designing mario an acceptable robot companion. In: 15th International Conference on Computers Helping People with Special Needs. Linz, Austria (2016)Google Scholar
  34. 34.
  35. 35.
    Softbank robotics. (2017)
  36. 36.
    Buddy, the companion robot. (2017)
  37. 37.
    Aido, the next generation home robot. (2016)
  38. 38.
    Umetani, T., Aoki, S., Akiyama, K., Mashimo, R., Kitamura, T., Nadamoto, A.: Scalable component-based manzai robots as automated funny content generators. J. Robotics Mechatron. 28, 862–869 (2016)Google Scholar
  39. 39.
    Umetani, T., Mashimo, R., Nadamoto, A., Kitamura, T., Nakayama, H.: Manzai robots: entertainment robots based on auto-created manzai scripts from web news articles. J. Robotics Mechatron. 26, 662–664 (2014)Google Scholar
  40. 40.
    Intouch health. (2017)
  41. 41.
    Pollack, M., Engberg, S., Matthews, J., Thrun, S., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrishnan, S., Dunbar-Jacob, J., McCarthy, C., Montemerlo, M., Pineau, J., Roy, N.: Pearl: a mobile robotic assistant for the elderly. In: AAAI Workshop on Automation as Eldercare (2002)Google Scholar
  42. 42.
    Robocare project. (2002)
  43. 43.
    Bahadori, S., Cesta, A., Grisetti, G., Iocchi, L., Leone, R., Nardi, D., Oddi, A., Pecora, F., Rasconi, R.: Robocare: an integrated robotic system for the domestic care of the elderly. In: Proceedings of Workshop on Ambient Intelligence AI*IA-03. Pisa, Italy (2003)Google Scholar
  44. 44.
    Cesta, A., Cortellessa, G., Pecora, F., Rasconi, R.: Supporting interaction in the robo care intelligent assistive environment. In: Association for the Advancement of Artificial Intelligence (AAAI) Symposium (2007)Google Scholar
  45. 45.
  46. 46.
    Robot developed by computer scientists to assist with elder care. (2008)
  47. 47.
    Graf, B.: Dependability of mobile robots in direct interaction with humans, pp. 223–239. Springer, Berlin, Heidelberg (2005)Google Scholar
  48. 48.
    Graf, B., Hans, M., Schraft, R.: Care-o-bot ii-development of a next generation robotic home assistant. Auton. Robots 16, 193–205 (2004)Google Scholar
  49. 49.
    Graf, B., Reiser, U., Hagele, M., Mauz, K., Klein, P.: Robotic home assistant care-o-bot 3-product vision and innovation platform. In: IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 139–144. Tokyo, Japan (2009)Google Scholar
  50. 50.
    Ludtke, M.: The service robot care-o-bot 4. CAN Newsletter, pp. 36–39 (2016)Google Scholar
  51. 51.
    Gross, H., Mueller, S., Schroeter, C., Volkhardt, M., Scheidig, A., Debes, K., Richter, K., Doering, N.: Robot companion for domestic health assistance: implementation, test and case study under everyday conditions in private apartments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5992–5999 (2015)Google Scholar
  52. 52.
    Hobbit—the mutual care robot. (2011)
  53. 53.
    Vincze, M., Zagler, W., Lammer, L., Weiss, A., Huber, A., Fischinger, D., Kortner, T., Schmid, A., Gisinger, C.: Towards a robot for supporting older people to stay longer inde-pendent at home. In: ISR/Robotik 2014; 41st International Symposium on Robotics, pp. 1–7 (2014)Google Scholar
  54. 54.
    Lammer, L., Huber, A., Weiss, A., Vincze, M.: Mutual care: how older adults react when they should help their care robot. In: 3rd International Symposium on New Frontiers in Human-Robot Interaction (2014)Google Scholar
  55. 55.
    Pripfl, J., Kortner, T., Batko-Klein, D., Hebesberger, D., Weninger, M., Gisinger, C., Frennert, S., Eftring, H., Antona, M., Adami, I., Weiss, A., Bajones, M., Vincze, M.: Results of a real world trial with a mobile social service robot for older adults. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 497–498 (2016)Google Scholar
  56. 56.
    Cognitive machines assist independent living as a we age. (2016)
  57. 57.
    Watson speech to text (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universitat Jaume ICastellónSpain

Personalised recommendations