Skip to main content

Supervised Learning Techniques for Body Mass Estimation in Bioarchaeology

  • Conference paper
  • First Online:
  • 902 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 634))

Abstract

The task of estimating the body mass from human skeletal remains based on bone measurements is an important one in bioarchaeology and forensic anthropology. Most of the current literature deals with this problem through mathematical linear regression formulas applied to various bones. In order to improve the existing results, two supervised learning-based regression models are proposed, using artificial neural networks and support vector machines, which are useful for expressing good (usually nonlinear) mappings between skeletal measurements and body mass. Several experiments performed on an open source data set show that the proposed applications of machine learning-based algorithms lead to better results than the current state of the art. Thus, the proposed methods are useful for producing good body mass estimations from skeletal measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arora, P., Srivastava, S., Singhal, S.: Analysis of gait flow image and gait Gaussian image using extension neural network for gait recognition. Int. J. Rough Sets Data Anal. 3(2), 45–64 (2016)

    Article  Google Scholar 

  2. Auerbach, B., Ruff, C.: Human body mass estimation: a comparison of “morphometric” and “mechanical” methods. Am. J. Phys. Anthropol. 125(4), 331–342 (2004)

    Article  Google Scholar 

  3. Ruff, R.B.: Body mass prediction from skeletal frame size in elite athletes. Am. J. Phys. Anthropol. 113(4), 507–517 (2000)

    Article  Google Scholar 

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Brown, L.D., Cai, T.T., Dasgupta, A.: Interval estimation for a binomial proportion. Statistical Science 16, 101–133 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Balas, V.E.: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput. Appl. 1–12 (2016)

    Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Grine, F., Jungers, W., Tobias, P., Pearson, O.: Fossil homo femur from berg aukas, northern namibia. Am. J. Phys. Anthropol. 26, 67–78 (1995)

    Google Scholar 

  9. Jantz, R.J., Moore-Jansen, P.H.: Database for Forensic Anthropology in the United States, 1962–1991 (ICPSRversion) (1998). University of Tennessee, Dept. of Anthropology, Knoxville, TN [producer] (1998). Inter-university Consortium for Political and Social Research, Ann Arbor, MI (2000)

    Google Scholar 

  10. Jantz, R.J., Moore-Jansen, P.H.: Database for Forensic Anthropology in the United States, 1962-1991 (ICPSR). University of Tennessee, Department of Anthropology (2000). http://www.icpsr.umich.edu/icpsrweb/NACJD/studies/2581

  11. Kaski, S., Kohonen, T.: Exploratory data analysis by the self-organizing map: structures of welfare and poverty in the world. In: Neural Networks in Financial Engineering. Proceedings of the Third International Conference on Neural Networks in the Capital Markets, pp. 498–507. World Scientific (1996)

    Google Scholar 

  12. Kriti Virmani, J., Dey, N., Kumar, V.: PCA-PNN and PCA-SVM based CAD systems for breast density classification. In: Hassanien, A.E., Grosan, C., Fahmy Tolba, M. (eds.) Applications of Intelligent Optimization in Biology and Medicine, pp. 159–180. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  13. Kröse, B., van der Smagt, P.: An introduction to neural networks. The University of Amsterdam (1996)

    Google Scholar 

  14. Linstrom, K.R., Boye, A.J.: A neural network prediction model for a psychiatric application. In: International Conference on Computational Intelligence and Multimedia Applications, pp. 36–40 (2005)

    Google Scholar 

  15. Maji, P., Chatterjee, S., Chakraborty, S., Kausar, N., Samanta, S., Dey, N.: Effect of Euler number as a feature in gender recognition system from offline handwritten signature using neural networks. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1869–1873, March 2015

    Google Scholar 

  16. McHenry, H.: Body size and proportions in early hominids. Am. J. Phys. Anthropol. 87, 407–431 (1992)

    Article  Google Scholar 

  17. Mitchell, T.M.: Machine Learning. McGraw-Hill Inc., New York (1997)

    MATH  Google Scholar 

  18. Moore, M.K.: Body mass estimation from the human skeleton. Ph.D. thesis, The University of Tennessee, Knoxville (2008)

    Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  21. Ruff, C., Holt, B., Niskanen, M., Sladk, V., Berner, M., Garofalo, E., Garvin, H., Hora, M., Maijanen, H., Niinimki, S., Salo, K., Schuplerov, E., Tompkins, D.: Stature and body mass estimation from skeletal remains in the European holocene. Am. J. Phys. Anthropol. 182(4), 601–617 (2012)

    Article  Google Scholar 

  22. Ruff, C., Scott, W., Liu, A.C.: Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. Am. J. Phys. Anthropol. 86, 397–413 (1991)

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Data Processing, vol. 1, pp. 318–362. The MIT Press, Cambridge (1986)

    Google Scholar 

  24. Russell, S., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice Hall International Series in Artificial Intelligence. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  25. Samanta, S., Ahmed, S.S., Salem, M.A.M.M., Nath, S.S., Dey, N., Chowdhury, S.S.: Haralick features based automated glaucoma classification using back propagation neural network. In: Satapathy, C.S., Biswal, N.B., Udgata, K.S., Mandal, J. (eds.) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014, vol. 1, pp. 351–358. Springer International Publishing, Cham (2015)

    Google Scholar 

  26. Sirshendu, H., Tanmay, B., Nilanjan, D., Hassanien, A.E.: Encryption using speeded up robust features extraction technique and artificial neural network. In: Innovations, and Applications, Image Feature Detectors Foundations (2015)

    Google Scholar 

  27. Skowronski, M.D., Harris, J.G.: Automatic speech recognition using a predictive echo state network classifier. Neural Netw. 20(3), 414–423 (2007)

    Article  MATH  Google Scholar 

  28. Smola, A., Schlkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  29. Somervuo, P., Kohonen, T.: Self-organizing maps and learning vector quantization for feature sequences. Neural Process. Lett. 10, 151–159 (1999)

    Article  Google Scholar 

  30. Tufféry, S.: Data Mining and Statistics for Decision Making. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  31. Wahba, G., Lin, Y., Zhang, H.: GACV for support vector machines, or, another way to look at margin-like quantities. In: Advances in Large Margin Classifiers, pp. 297–309 (2000)

    Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-0082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad-Sebastian Ionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ionescu, VS., Czibula, G., Teletin, M. (2018). Supervised Learning Techniques for Body Mass Estimation in Bioarchaeology. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-62524-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62524-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62523-2

  • Online ISBN: 978-3-319-62524-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics