Advertisement

Theory of Differential Inclusions and Its Application in Mechanics

  • Maria Kiseleva
  • Nikolay KuznetsovEmail author
  • Gennady Leonov
Chapter

Abstract

The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work, three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load chande is studied. Analytical methods of investigation of systems with such asymmetrical friction, based on the use of Lyapunov functions, are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems.

Keywords

Differential Inclusions Discontinuous Right-hand Side Drilling System Chua System Hidden Attractors 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (project 14-21-00041).

References

  1. 1.
    Agrachev, A., Sachkov, Y.: Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences, vol. 87. Control Theory and Optimization, II. Springer, Berlin (2004)Google Scholar
  2. 2.
    Aizerman, M.A., Pyatnitskii, E.S.: Fundamentals of the theory of discontinuous systems. I. Avtom. Tele mekh 7, 33–47 (1974)zbMATHGoogle Scholar
  3. 3.
    Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., Pogromsky, A.Yu.: Hidden oscillations in aircraft flight control system with input saturation. IFAC Proc. 46(12), 75–79 (2013)Google Scholar
  4. 4.
    Andrievsky, B.R., Kuznetsov, N.V., Leonov, G.A., Seledzhi, S.M.: Hidden oscillations in stabilization system of flexible launcher with saturating actuators. IFAC Proc. 46(19), 37–41 (2013)CrossRefGoogle Scholar
  5. 5.
    Andronov, A., Mayer, M.: Vyshnegradsky problem in control theory i. Automatica i Telemekhanika 8(5), 314–334 (1947)Google Scholar
  6. 6.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  7. 7.
    Bennett, S.: A History of Control Engineering (unknown) (1930)Google Scholar
  8. 8.
    Blau, P.J.: Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  9. 9.
    Boltianskii, V.G.: Mathematical Methods of Optimal Control. Holt, Rinehart and Winston, New York (1971)Google Scholar
  10. 10.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, vol. 1. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  11. 11.
    Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., Leonov, G.A.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chuas circuits. J. Comput. Syst. Sci. Int. 50(4), 511–543 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brogliato, B., Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Burkin, I., Khien, N.N.: Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems. Differ. Equs. 50(13), 1695–1717 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chaudhuri, U., Prasad, A.: Complicated basins and the phenomenon of amplitude death in coupled hidden attractors. Phys. Lett. A 378(9), 713–718 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Danca, M.F.: Hidden transient chaotic attractors of Rabinovich-Fabrikant system. Nonlinear Dyn. 86(2), 1263–1270 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    De Bruin, J., Doris, A., van de Wouw, N., Heemels, W., Nijmeijer, H.: Control of mechanical motion systems with non-collocation of actuation and friction: a Popov criterion approach for input-to-state stability and set-valued nonlinearities. Automatica 45(2), 405–415 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press, Boca Raton (1998)zbMATHGoogle Scholar
  19. 19.
    Emelyanov, S.: Variable Structure Control Systems. Nouka, Moscow (1967)zbMATHGoogle Scholar
  20. 20.
    Filippov, A.: On existence of solutions of multivalued differential equations. Math. Notes 10(3), 307–313 (1971)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Filippov, A.: Differential equations with discontinuous right-hand side. Math. Notes (1985)Google Scholar
  22. 22.
    Filippov, A.F.: Differential equations with discontinuous right-hand side. Matematicheskii sbornik 93(1), 99–128 (1960)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gelig, A.: Non-classical Differential Equations. Series 1. Mathematics. Mechanics. Astronomy, vol. 4 (2006)Google Scholar
  24. 24.
    Gelig, AKh, Leonov, G.A., Yakubovich, V.A.: Stability of Nonlinear Systems with Non-unique Equilibrium State. Nauka, Moscow (1978)zbMATHGoogle Scholar
  25. 25.
    Goryacheva, I.: Contact Mechanics in Tribology. Series: Solid Mechanics and Its Applications, vol. 61 (1998)Google Scholar
  26. 26.
    Goryacheva, I., Rajeev, P., Farris, T.: Wear in partial slip contact. Trans.-Am. Soc. Mech. Eng. Tribol. 123(4), 848–856 (2001)Google Scholar
  27. 27.
    Jafari, S., Pham, V.T., Golpayegani, S.M.R.H., Moghtadaei, M., Kingni, S.T.: The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurc. Chaos 26(13), 1650,211 (2016)Google Scholar
  28. 28.
    Kiseleva, M.: Oscillations of dynamical systems applied in drilling: analytical and numerical methods. Jyväskylä Stud. Comput. 181, 1456–5390 (2013)Google Scholar
  29. 29.
    Kiseleva, M., Kondratyeva, N., Kuznetsov, N., Leonov, G., Solovyeva, E.: Hidden periodic oscillations in drilling system driven by induction motor. IFAC Proc. 47(3), 5872–5877 (2014)CrossRefGoogle Scholar
  30. 30.
    Kiseleva, M., Kondratyeva, N., Kuznetsov, N., Leonov, G.: Hidden oscillations in drilling systems with salient pole synchronous motor. IFAC-PapersOnLine 48(11), 700–705 (2015)CrossRefGoogle Scholar
  31. 31.
    Kiseleva, M.A., Kuznetsov, N.V.: Coinsidence of Gelig-Leonov-Yakubovich, Filippov, and Aizerman-Pyatnitskii definitions. Mathematics 48(2), 66–71 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Kiseleva, M.A., Kuznetsov, N.V., Leonov, G.A., Neittaanmaki, P.: Drilling systems: stability and hidden oscillations. In: Discontinuity and Complexity in Nonlinear Physical Systems, vol. 6. Springer, Cham (2014)Google Scholar
  33. 33.
    Kiseleva, M.A., Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in electromechanical systems with and without equilibria. IFAC-PapersOnLine 49(14), 51–55 (2016)CrossRefGoogle Scholar
  34. 34.
    Kloeden, P.E., Marín-Rubio, P.: Negatively invariant sets and entire trajectories of set-valued dynamical systems. Set-Valued Var. Anal. 19(1), 43–57 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kolesnikov, V.: Thermal-Physical Processes in Metal-polymeric Tribosystems. Nauka, Moscow (2003)Google Scholar
  36. 36.
    Kondrateva, N., Leonov, G., Rodyukov, F., Shepeljavyi, A.: Nonlocal analysis of differential equations of induction motors. Tech. Mech. 21(1), 75–86 (2001)Google Scholar
  37. 37.
    Kuznetsov, A., Kuznetsov, S., Mosekilde, E., Stankevich, N.: Co-existing hidden attractors in a radio-physical oscillator system. J. Phys. A: Math. Theor. 48(12), 125,101 (2015)Google Scholar
  38. 38.
    Kuznetsov, N., Leonov, G.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. IFAC Proc. 47(3), 5445–5454 (2014)CrossRefGoogle Scholar
  39. 39.
    Kuznetsov, N., Kuznetsova, O., Leonov, G., Vagaitsev, V.: Analytical-numerical localization of hidden attractor in electrical Chuas circuit. Informatics in Control. Automation and Robotics, pp. 149–158. Springer, Berlin (2013)Google Scholar
  40. 40.
    Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models: a short survey. In: AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, pp. 13–25. Springer, Berlin (2016)Google Scholar
  41. 41.
    Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized chua’s system. IFAC Proc. 43(11), 29–33 (2010)CrossRefGoogle Scholar
  42. 42.
    Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A., Vagaytsev, V.: Hidden attractor in chua’s circuits. ICINCO 1, 279–283 (2011)Google Scholar
  43. 43.
    Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A.: Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system. Differ. Equs. Dyn. Syst. 21(1–2), 29–34 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kuznetsov, N.V., Leonov, G.A., Yuldashev, M., Yuldashev, R.: Nonlinear analysis of classical phase-locked loops in signal’s phase space. IFAC Proc. 47(3), 8253–8258 (2014)CrossRefzbMATHGoogle Scholar
  45. 45.
    Lao, S.K., Shekofteh, Y., Jafari, S., Sprott, J.C.: Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurc. Chaos 24(01), 1450,010 (2014)Google Scholar
  46. 46.
    Leonov, G.A.: Mathematical Problems of Control Theory: An Introduction, vol. 6. World Scientific, Singapore (2001)zbMATHGoogle Scholar
  47. 47.
    Leonov, G.A.: Phase synchronization: theory and applications. Autom. Remote Control 67(10), 1573–1609 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Leonov, G.A., Kiseleva, M.A.: Stability of electromechanical models of drilling systems under discontinuous loads. In: Doklady Physics, vol. 57, pp. 206–209. Springer, Berlin (2012)Google Scholar
  49. 49.
    Leonov, G.A., Kondrateva, N.V.: Stability analysis of electric alternating current machines. SPb: Isd. St. Petersburg. univ 259 (2009)Google Scholar
  50. 50.
    Leonov, G.A., Kuznetsov, N.V.: Algorithms for searching for hidden oscillations in the aizerman and kalman problems. In: Doklady Mathematics, vol. 84, pp. 475–481. Springer, Berlin (2011)Google Scholar
  51. 51.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc Chaos 23(01), 1330,002 (2013)Google Scholar
  52. 52.
    Leonov, G.A., Bragin, V.O., Kuznetsov, N.Y.: Algorithm for constructing counterexamples to the Kalman problem. In: Doklady Mathematics, vol. 82, pp. 540–542. Springer, Berlin (2010)Google Scholar
  53. 53.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden chua’s attractors. Phys. Lett. A 375(23), 2230–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth chua systems. Phys. D: Nonlinear Phenom. 241(18), 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Leonov, G.A., Kiseleva, M.A., Kuznetsov, N.V., Neittaanmäki, P.: Hidden oscillations in drilling systems: torsional vibrations. J. Appl. Nonlinear Dyn. 2(1), 83–94 (2013)CrossRefGoogle Scholar
  56. 56.
    Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., et al.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)CrossRefGoogle Scholar
  57. 57.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1), 166–174 (2015)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)CrossRefGoogle Scholar
  59. 59.
    Leonov, G.A., Kiseleva, M.A., Kuznetsov, N.V., Kuznetsova, O.A.: Discontinuous differential equations: comparison of solution definitions and localization of hidden chua attractors. IFAC-PapersOnLine 48(11), 408–413 (2015)CrossRefGoogle Scholar
  60. 60.
    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified lorenz system. Int. J. Bifurc. Chaos 24(03), 12 (2014)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Li, P., Zheng, T., Li, C., Wang, X., Hu, W.: A unique jerk system with hidden chaotic oscillation. Nonlinear Dyn. 86(1), 197–203 (2016)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Li, Q., Zeng, H., Yang, X.S.: On hidden twin attractors and bifurcation in the Chuas circuit. Nonlinear Dyn. 77(1–2), 255–266 (2014)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Ludema, K.C.: Friction, Wear, Lubrication: A Textbook in Tribology. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  64. 64.
    Menacer, T., Lozi, R., Chua, L.O.: Hidden bifurcations in the multispiral chua attractor. Int. J. Bifurc. Chaos 26(14), 1630,039 (2016)Google Scholar
  65. 65.
    Mihajlovic, N., Van Veggel, A., Van de Wouw, N., Nijmeijer, H.: Analysis of friction-induced limit cycling in an experimental drill-string system. J. Dyn. Syst. Meas. Control 126(4), 709–720 (2004)CrossRefGoogle Scholar
  66. 66.
    Painlevé, P.: Lectures on Friction. Gostekhizdat, Moscow (1954)zbMATHGoogle Scholar
  67. 67.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts, vol. 9. Wiley, New York (1996)CrossRefzbMATHGoogle Scholar
  68. 68.
    Pham, V.T., Rahma, F., Frasca, M., Fortuna, L.: Dynamics and synchronization of a novel hyperchaotic system without equilibrium. Int. J. Bifurc. Chaos 24(06), 1450,087 (2014)Google Scholar
  69. 69.
    Pham, V.T., Jafari, S., Volos, C., Wang, X., Golpayegani, S.M.R.H.: Is that really hidden? the presence of complex fixed-points in chaotic flows with no equilibria. Int. J. Bifurc. Chaos 24(11), 1450,146 (2014)Google Scholar
  70. 70.
    Pham, V.T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., Wang, X.: A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos 26(08), 1650,139 (2016)Google Scholar
  71. 71.
    Piiroinen, P.T., Kuznetsov, Y.A.: An event-driven method to simulate filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. (TOMS) 34(3), 13 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Poznyak, A.S., Yu, W., Sanchez, E.N., Perez, J.P.: Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Trans. Neural Netw. 10(6), 1402–1411 (1999)CrossRefGoogle Scholar
  74. 74.
    Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1965)Google Scholar
  75. 75.
    Royden, H.L., Fitzpatrick, P.: Real Analysis, vol. 198. Macmillan, New York (1988)zbMATHGoogle Scholar
  76. 76.
    Shokir, E.: A novel pc program for drill string failure detection and prevention before and while drilling specially in new areas. J. Oil Gas Bus 1, 1–14 (2004)Google Scholar
  77. 77.
    Tolstonogov, A.: Differential inclusions in a Banach space, vol. 524. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  78. 78.
    Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Vaisberg, O., Vincke, O., Perrin, G., Sarda, J., Fay, J.: Fatigue of drillstring: state of the art. Oil Gas Sci. Technol. 57(1), 7–37 (2002)CrossRefGoogle Scholar
  80. 80.
    Wazewski, T.: Sur une condition équivalente à l’équation au contingent. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9, 865–867 (1961)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Wei, Z., Moroz, I., Liu, A.: Degenerate Hopf bifurcations, hidden attractors, and control in the extended Sprott E system with only one stable equilibrium. Turk. J. Math. 38(4), 672–687 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Zelinka, I.: Evolutionary identification of hidden chaotic attractors. Eng. Appl. Artif. Intell. 50, 159–167 (2016)CrossRefGoogle Scholar
  84. 84.
    Zhao, H., Lin, Y., Dai, Y.: Hidden attractors and dynamics of a general autonomous van der pol–duffing oscillator. Int. J. Bifurc. Chaos 24(06), 1450,080 (2014)Google Scholar
  85. 85.
    Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Maria Kiseleva
    • 1
  • Nikolay Kuznetsov
    • 1
    • 2
    Email author
  • Gennady Leonov
    • 1
    • 3
  1. 1.St. Petersburg State UniversitySaint PeterburgRussia
  2. 2.University of JyväskyläJyväskyläFinland
  3. 3.Institute of Problems of Mechanical Engineering, Russian Academy of SciencesSaint PeterburgRussia

Personalised recommendations