Fractional-Order Model Reference Adaptive Controllers for First-Order Integer Plants

  • Manuel A. Duarte-MermoudEmail author
  • Norelys Aguila-Camacho
  • Javier A. Gallegos
  • Juan C. Travieso-Torres


In this chapter, we extend the ideas of the model reference adaptive control (MRAC), developed for integer-order plants with integer-order adaptive laws, to the case of integer-order plants but with fractional-order adaptive laws. Two cases are analyzed in detail; the direct MRAC (DMRAC) and the combined MRAC (CMRAC). In both cases, boundedness of all the signals in the resultant adaptive scheme is theoretically proved and a discussion on the error, and parameter convergence is provided in each case. The study is performed for scalar first-order time-invariant plants, since extensions to the vector case are currently under investigation.



The results reported in this chapter have been financed by CONICYT- Chile, under the Basal Financing Program FB0809 “Advanced Mining Technology Center”, FONDECYT Project 1150488, “Fractional Error Models in Adaptive Control and Applications”, and FONDECYT 3150007, “Postdoctoral Program 2015”.


  1. 1.
    Aguila-Camacho, N., Duarte-Mermoud, M.A.: Fractional adaptive control for an automatic voltage regulator. ISA Trans. 52, 807–815 (2013)CrossRefGoogle Scholar
  2. 2.
    Aguila-Camacho, N., Duarte-Mermoud, M.A.: Boundedness of the solutions for certain classes of fractional differential equations with applications to adaptive systems. ISA Trans. 60, 82–88 (2016)CrossRefGoogle Scholar
  3. 3.
    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alikhanov, A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46, 660–666 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Astrom, K.J., Bohlin, T.: Numerical Identification of Linear Dynamic Systems From Normal Operating Records, pp. 96–111. Springer, Boston (1966)Google Scholar
  6. 6.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duarte-Mermoud, M.A., Narendra, K.S.: Combined direct and indirect approach to adaptive control. IEEE Trans. Autom. Control 34, 1071–1075 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Duarte-Mermoud, N.A., Narendra, K.S.: A new approach to model reference adaptive control. Int. J. Adapt. Control Signal Process. 3(1), 53–73 (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gallegos, J.A., Duarte-Mermoud, M.A.: Boundedness and convergence on fractional order systems. J. Comput. Appl. Math. 296, 815–826 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gallegos, J.A., Duarte-Mermoud, M.A.: Mixed order robust adaptive control. Submitt. J. Franklin Inst. (2017)Google Scholar
  12. 12.
    Gallegos, J.A., Duarte-Mermoud, M.A.: Robustness and convergence of fractional systems and their applications to adaptive systems. Submitted to Fractional Calculus and Applied Analysis (2017)Google Scholar
  13. 13.
    Gallegos, J.A., Duarte-Mermoud, M.A., Aguila-Camacho, N.: Smoothness and boundedness on system of mixed-order fractional differential equations. Technical Report 2016-1, Santiago, Chile: Department of Electrical Engineering, University of Chile (2016)Google Scholar
  14. 14.
    Goodwin, G.C., Ramadge, P.J., Caines, P.E.: Discrete time multivariable adaptive control. IEEE Trans. Autom. Control AC-25(3), 449–456 (1980)Google Scholar
  15. 15.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)Google Scholar
  16. 16.
    Morse, A.S.: Global stability of parameter-adaptive control systems. IEEE Trans. Autom. Control AC-25(3), 433–439 (1980)Google Scholar
  17. 17.
    Narendra, K.S., Annaswamy, A.M.: Persistent excitation of adaptive systems. Int. J. Control 45, 127–160 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Dover Publications Inc., Mineola (2005)zbMATHGoogle Scholar
  19. 19.
    Narendra, K.S., Duarte-Mermoud, M.A.: Robust adaptive control using direct and indirect methods. In: A.A.C. Council (ed.) Proceedings of the 7th American Control Conference, vol. 3, pp. 2429–2433. Atlanta, Georgia, USA (1988)Google Scholar
  20. 20.
    Narendra, K.S., Lin, Y.H.: Stable discrete adaptive control. IEEE Trans. Autom. Control AC-25(3), 456–461 (1980)Google Scholar
  21. 21.
    Narendra, K.S., Lin, Y.H., Valavani, L.S.: Stable adaptive controller design part ii: Proof of stability. IEEE Trans. Autom. Control AC-25(3), 440–480 (1980)Google Scholar
  22. 22.
    Oustaloup, A.: La commande CRONE: commande robuste d’ordre non entier. Hermes, Paris (1991)zbMATHGoogle Scholar
  23. 23.
    Sastry, S., Bodson, M.: Adaptive Control: Stability Convergence and Robustness. Prentice Hall, Upper Saddle River (1994)zbMATHGoogle Scholar
  24. 24.
    Suárez, J.I., Vinagre, B.M., Chen, Y.Q.: A fractional adaptation scheme for lateral control of an AGV. J. Vibr. Control 14, 1499–1511 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Valério, D., Da Costa, J.S.: Ninteger: a non-integer control toolbox for matlab. In: IFAC (ed.) Fractional Derivatives and Applications. Bordeaux, France (2004)Google Scholar
  26. 26.
    Vinagre, B.M., Petrás, I., Podlubny, I., Chen, Y.Q.: Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dyn. 29, 269–279 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Whitaker, H.P., Yamron, J., Kezer, A.: Design of model reference adaptive control systems for aircraft. Technical Report R-164, Instrumentation Laboratory, MIT, Cambridge, MA (1958)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Manuel A. Duarte-Mermoud
    • 1
    Email author
  • Norelys Aguila-Camacho
    • 1
  • Javier A. Gallegos
    • 2
  • Juan C. Travieso-Torres
    • 3
  1. 1.Department of Electrical Engineering and AMTCUniversity of ChileSantiagoChile
  2. 2.Department of Electrical EngineeringUniversity of ChileSantiagoChile
  3. 3.Department of Industrial TechnologiesUniversity of Santiago de ChileSantiagoChile

Personalised recommendations