Design of Asymptotic Second-Order Sliding Mode Control System

  • Yaodong PanEmail author
  • Katsuhisa Furuta


A chattering-free sliding mode (SM) control system can be realized by a second-order sliding mode (2nd-SM) control based on the derivative model of the original system. In this case, the derivative of a switching function, which may be unavailable for the control implementation, is required for the finite time convergence to a 2nd-SM. In this chapter, a new asymptotic SM control algorithm, without using the derivative of the switching function, is proposed for a class of nonlinear systems, to ensure the asymptotically convergence to a 2nd-SM. The locally and asymptotically stability is guaranteed by a Lyapunov function.


  1. 1.
    Anosov, D.V.: On stability of equilibrium points of relay systems. Autom. Remote Control 2(1), 135–149 (1959)Google Scholar
  2. 2.
    Bartolini, G., Ferrara, A., Pisano, A., Usai, E.: On the convergence properties of a 2-sliding control algorithm for nonlinear uncertain systems. Int. J. Control 74(7), 718–731 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control 76(9–10), 875–892 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boiko, I., Fridman, L., Castellanos, M.I.: Analysis of second order sliding mode algorithms in the frequency domain. IEEE Trans. Autom. Control 49(6), 946–950 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Damiano, A., Gatto, G., Marongiu, I., Pisano, A.: Second-order sliding-mode control of DC drives. IEEE Trans. Indust. Electron. 51(2), 364–373 (2004)CrossRefGoogle Scholar
  6. 6.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)zbMATHGoogle Scholar
  7. 7.
    Fridman, L., Levant, A.: Higher order sliding modes as a natural phenomenon in control theory. Lect. Notes Control Inf. Sci. Robust Control Var. Struct. Lyapunov Tech. 217, 107–133 (1996)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fridman, L.M.: Stability of motions in singularly perturbed discontinuous control systems. In: Proceedings of IFAC World Conference, pp. 367–370. Sydney (1993)Google Scholar
  9. 9.
    Fridman, L.M.: Chattering analysis in sliding mode systems with inertial sensors. Int. J. Control 76(9–10), 906–912 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–263 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76, 924–941 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marquez, R., Tapia, A., Bernal, M., Fridman, L.: Lmi-based second-order sliding set design using reduced order of derivatives. Int. J. Robust Nonlinear Control 25, 3763–3779 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pan, Y., Kumar, K., Liu, G.: Reduced-order design of high-order sliding mode control system. Int. J. Robust Nonlinear Control 21(18), 2064–2078 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shtessel, Y.B., Krupp, D.R., Shkolnikov, I.A.: 2-sliding-mode control for nonlinear plants with parametric andd dynamic uncertainties. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, pp. 1–9. Denver, CO (2000)Google Scholar
  16. 16.
    Utkin, U.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Honeywell AerospaceMississaugaCanada
  2. 2.Tokyo Denki UniversityTokyoJapan

Personalised recommendations