Skip to main content

Hill Equation: From 1 to 2 Degrees of Freedom

  • Chapter
  • First Online:
New Perspectives and Applications of Modern Control Theory

Abstract

After the introduction, in the first part of the chapter, we review some properties of the scalar Hill equation, a second-order linear ordinary differential equation with periodic coefficients. In the second part, we extend and compare the vectorial Hill equation; most of the results are confined to the case of two degrees of freedom (DOF). In both cases, we describe the equations with parameters \( \left( \alpha ,\beta \right) \), the zones of instability in the \(\alpha -\beta \) plane are called Arnold Tongues. We graphically illustrate the properties wherever it is possible with the aid of the Arnold Tongues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When the pendulum is assumed a mass M hanging of rigid massless rod.

  2. 2.

    More well known as Lord Rayleigh, more correctly Baron Rayleigh because Baron is a higher novelty title than Lord.

  3. 3.

    The name Arnold Tongues was introduced after [2].

  4. 4.

    Matriciant in the russian literature [1]. Also denominated as Cauchy Matrix or Normalized Fundamental Matrix.

  5. 5.

    The necessary and sufficient condition for R to be real is that the real negative eigenvalues of \(\varPhi \left( T,0\right) \), be of algebraic multiplicity even [1].

  6. 6.

    This transformation was introduced by Lyapunov himself [35], other reference is [8].

  7. 7.

    Given a square matrix A, by \(\sigma \left( A\right) \) we denote its spectrum, i.e., the set of all the eigenvalues.

  8. 8.

    Not necessarily periodic.

  9. 9.

    We will assume through the paper that \(q\left( t\right) \) is piecewise continuous, integrable in \(\left[ 0,T\right] \) and of zero average, i.e., \( \mathop {\intop }_0^T q\left( t\right) dt=0\).

  10. 10.

    When the multipliers are \(\pm 1\) and the Monodromy matrix is diagonal, and we say that there is a point of Coexistence, because there are two linearly independent periodic solutions of Hill equation; T-periodic for multipliers \(+1\), and 2T-periodic for the multipliers equal to \(-1\).

  11. 11.

    In Magnus [36] the function that we call \(\phi \left( \alpha ,\beta \right) \), is denoted as \(\varDelta \left( \lambda \right) \), because \(\lambda \) is used instead of our \(\alpha \), and the parameter \(\beta \) is not used in the cited work.

  12. 12.

    Recall that given any skew-hermitian matrix J, then \(\left( iJ\right) \) is an hermitian matrix. [22, 48].

  13. 13.

    Equivalently, if we increase the Hamiltonian, i.e., \(\widetilde{H}\left( t\right) -H\left( t\right) >0,\) and \(\mu \) was an isolated multiplier on the unit circle associated to \(H\left( t\right) \), when \(H\left( t\right) \) is increased to \(\widetilde{H}\left( t\right) ,\) \(\mu \) moves on the unit circle to \(\widetilde{\mu }\); if \(\arg \widetilde{\mu }>\arg \mu \), the multiplier \(\mu \) is said to be a Multiplier of the First Kind, contrarily, i.e., \(\arg \widetilde{\mu }<\arg \mu \), the multiplier \(\mu \) is a Multiplier of the Second Kind [48].

  14. 14.

    In the case that the periodic function \(q\left( t\right) \) is an elliptic function, called Lamé Equation.

  15. 15.

    Chulaevsky [13] justifies the fact that coexistence points are exceptional ones, because: ... ‘From a topological point of view the scalar matrices, which correspond to coexistence points, form a subvariety in the variety of \(2\times 2\) Jordan Cells.’

  16. 16.

    Here \(tr\left[ M(\alpha _{0},\beta _{0},q\left( t\right) +\gamma r\left( t\right) )\right] \) refers to the trace of the Monodromy Matrix associated to \(\overset{\underset{\bullet \,\bullet }{}}{y}+\left[ \overset{}{\alpha _{0}}+\beta _{0}\left( \overset{}{q\left( t\right) }+\gamma r\left( t\right) \right) \right] y=0\).

  17. 17.

    We use \(r\measuredangle \theta \) to represent a complex number with modulus r, and argument \(\theta .\)

  18. 18.

    In [17] this property is extended to Hamiltonian systems with dissipation, strictly speaking this class of systems is not longer Hamiltonian.

  19. 19.

    There is a reduced for of a Floquet theorem, no factorization is possible, but there is a reducibility part.

  20. 20.

    A sequence \(\left\{ \ldots ,x_{k},x_{k+1}\ldots \right\} \) double infinite belongs to \(\ell _{2}\) if \(\sum \limits _{k=-\infty }^{\infty }\left| x_{k}\right| ^{2}=M<\infty \). See for instance [18].

References

  1. Adrianova, L.Y.: Introduction to Linear Systems of Differential Equations. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  2. Arnol’d, V.I.: Remarks on the perturbation theory for problems of Mathieu type. Russ. Math. Surv. 38(4), 215–233 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics, vol. 60 (1989)

    Google Scholar 

  4. Atkinson, F.V.: Discrete and Continuous Boundary Problems. Academic Press, New York (1964)

    MATH  Google Scholar 

  5. Belokolos, E.D., Gesztesy, F., Makarov, K.A., Sakhnovich, L.A.: Matrix-valued generalizations of the theorems of Borg and Hochstadt. Lect. Notes Pure Appl. Math. 234, 1–34 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden- Day lnc, San Francisco (1964)

    MATH  Google Scholar 

  7. Borg, G.: Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe. An inverse problem of the self-adjoint Sturm-Liouville equation. Acta Math. 78(1), 1–96 (1946) (In German)

    Google Scholar 

  8. Brockett, R.: Finite Dimensional Linear Systems. Wiley, New York (1969)

    MATH  Google Scholar 

  9. Broer, H., Levi, M., Simo, C.: Large scale radial stability density of Hill’s equation. Nonlinearity 26(2), 565–589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown, B.M., Eastham, M.S., Schmidt, K.M.: Periodic Differential Operators, vol. 228. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  11. Champneys, A.: Dynamics of parametric excitation. Mathematics of Complexity and Dynamical Systems, pp. 183–204. Springer, New York (2012)

    Chapter  Google Scholar 

  12. Chen, C.T.: Linear System Theory and Design. Oxford University Press, Oxford (1998)

    Google Scholar 

  13. Chulaevsky, V.A.: Almost Periodic Operators and Related Nonlinear Integrable Systems. Manchester University Press, Manchester (1989)

    MATH  Google Scholar 

  14. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Education, New York (1955)

    MATH  Google Scholar 

  15. Collado, J.: Critical lines in vectorial Hill’s equations. Under preparation (2017)

    Google Scholar 

  16. Collado, J., Jardón-Kojakhmetov, H.: Vibrational stabilization by reshaping Arnold Tongues: a numerical approach. Appl. Math. 7, 2005–2020 (2016)

    Article  Google Scholar 

  17. Collado, J., Ramirez, M., Franco, C.: Hamiltonian systems with dissipation and its application to attenuate vibrations. Under preparation (2017)

    Google Scholar 

  18. Corduneaunu, C.: Almost Periodic Oscillations and Waves. Springer, Berlin (2009)

    Book  Google Scholar 

  19. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, London (1973)

    MATH  Google Scholar 

  20. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Annales scientifiques de l’École normale supérieure 12, 47–88 (1883)

    Article  MATH  Google Scholar 

  21. Fossen, T., Nijmeijer, H. (eds.): Parametric Resonance in Dynamical Systems. Springer Science & Business Media, New York (2011)

    Google Scholar 

  22. Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea, Providence (1959)

    MATH  Google Scholar 

  23. Gelfand, I.M., Levitan, B.M.: On the determination of a differential equation from its spectral function. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 15(4), 309–360. English Trans. Am. Math. Soc. Trans. 1(2), 253–304, 1955 (1951)

    Google Scholar 

  24. Gelfand, I.M., Lidskii, V.B.: On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Am. Math. Soc. Transl. 2(8), 143–181 (1958)

    MathSciNet  Google Scholar 

  25. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, New York (2006)

    Google Scholar 

  26. Hansen, J.: Stability diagrams for coupled Mathieu-equations. Ingenieur-Archiv 55(6), 463–473 (1985)

    Article  MATH  Google Scholar 

  27. Hayashi, C.: Forced Oscillations in Non-Linear Systems. Nippon Printing and Publishing Co, Osaka (1953)

    Google Scholar 

  28. Hill, G.W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math. 8(1), 1–36 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hochstadt, H.: Function theoretic properties of the discriminant of Hill’s equation. Mathematische Zeitschrift 82(3), 237–242 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  30. Howard, J.E., MacKay, R.S.: Linear stability of symplectic maps. J. Math. Phys. 28(5), 1036–1051 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalman, D.: Uncommon Mathematical Excursions: Polynomial and Related Realms. Dolciani Mathematical Expositions, vol. 35. Mathematical Association of America (2009)

    Google Scholar 

  32. Kapitsa, P.L.: Dynamic stability of the pendulum when the point of suspension is oscillating. Sov. Phys. JETP 21, 588 (In Russian). English Translation: In Collected works of P. Kapitsa (1951)

    Google Scholar 

  33. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (2001)

    Google Scholar 

  34. Krein, M.G.: Fundamental aspects of the theory of $\lambda -$ zones of stability of a canonical system of linear differential equations with periodic coefficients. To the memory of AA Andronov [in Russian], Izd. Akad. Nauk SSSR, Moscow, 414–498. English Translation: Am. Math. Soc. Transl. 120(2), 1–70 (1955)

    Google Scholar 

  35. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534. Also: Taylor and Francis (1992). From the original Ph.D. thesis submitted in Kharkov (1882)

    Google Scholar 

  36. Magnus, W., Winkler, S.: Hill’s Equation. Dover Phoenix Editions. Originally published by Wiley, New York 1966 and 1979 (2004)

    Google Scholar 

  37. Marchenko, V.A.: Sturm-Liouville operators and their applications. Kiev Izdatel Naukova Dumka. Engl. Transl. (2011). Sturm-Liouville Operators and Applications, vol. 373. American Mathematical Society (1977)

    Google Scholar 

  38. McKean, H.P., Van Moerbeke, P.: The spectrum of Hill’s equation. Inventiones mathematicae 30(3), 217–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, vol. 90. Springer Science & Business Media, New York (2008)

    MATH  Google Scholar 

  40. Richards, J.A.: Modeling parametric processes–a tutorial review. Proc. IEEE 65(11), 1549–1557 (1977)

    Article  Google Scholar 

  41. Rodriguez, A., Collado, J.: Periodically forced Kapitza’s pendulum. In: American Control Conference (ACC), pp. 2790–2794. IEEE (2016)

    Google Scholar 

  42. Sanmartín Losada, J.R.: O Botafumeiro: parametric pumping in the middle age. Am. J. Phys. 52, 937–945 (1984)

    Article  Google Scholar 

  43. Seyranian, A.P.: Parametric resonance in mechanics: classical problems and new results. J. Syst. Des. Dyn. 2(3), 664–683 (2008)

    Google Scholar 

  44. Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications, vol. 13. World Scientific, Singapore (2003)

    Google Scholar 

  45. Staržhinskiĭ, V.M.: Survey of works on conditions of stability of the trivial solution of a system of linear differential equations with periodic coefficients. Prik. Mat. Meh. 18, 469–510 (Russian). Engl. Transl. Am. Math. Soc. Transl. Ser. 1(2) (1955)

    Google Scholar 

  46. Stephenson, A.: On induced stability. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(86), 233–236 (1908)

    Article  MATH  Google Scholar 

  47. van der Pol, B., Strutt, M.J.O.: On the stability of the solutions of Mathieu’s equation. Lond. Edinb. Dublin Philos. Mag. J. Sci. 5(27), 18–38 (1928)

    Article  MATH  Google Scholar 

  48. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients, vol. 1 & 2. Halsted, Jerusalem (1975)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank to A. Rodriguez, C. Franco and M. Ramirez for a detailed revision of the first draft and also to G. Rodriguez for the computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joaquin Collado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Joaquin Collado, M. (2018). Hill Equation: From 1 to 2 Degrees of Freedom. In: Clempner, J., Yu, W. (eds) New Perspectives and Applications of Modern Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-62464-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62464-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62463-1

  • Online ISBN: 978-3-319-62464-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics