Luenberger Observer Design for Uncertainty Nonlinear Systems



Most of the nonlinear observers require the nonlinear systems to be known. If the systems are partly unknown, model-free observers such as high-gain observers, sliding mode observers, and neural observers, can be applied. However, the performances of these observers are not satisfactory, for example, they are sensitive to measurement noise and they can only estimate the derivative of the output. In this chapter, we use the structure of Luenberger observers for partially unknown nonlinear systems. Using a Riccati differential equation, we design a time-varying observer gain such that the observer error is robust with respect to bounded uncertainties. Compared with the other robust nonlinear observers, this observer is simple and effective with respect to the uncertainties in the nonlinear systems.


  1. 1.
    Andrieu, V., Praly, L.: On the existence of a Kazantzis-Kravaris/Luenberger observer. SIAM (2006). doi: 10.1137/040617066 zbMATHGoogle Scholar
  2. 2.
    Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated gain and homogeneous correction terms. Automatica 45(2), 422–428 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bernhard, P.: H\(\infty \)-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhäuser, Basel (1991) Please check the edits made in References [3, 6, 15, 20], and correct if necessaryGoogle Scholar
  4. 4.
    Chen, M., Ge, S.S.: Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans. Cybern. 43(4), 1213–1225 (2013). doi: 10.1109/TSMCB.2012.2226577 CrossRefGoogle Scholar
  5. 5.
    Desoer, C.A., Vidyasagar, M.: Feedback systems: input-output properties. SIAM (2009)Google Scholar
  6. 6.
    Dong, Y., Wang, H., Wang, Y.: Design of observers for nonlinear systems with H\(\infty \) performance analysis. Math. Methods Appl. Sci. 37(5), 718–725 (2014). doi: 10.1002/mma.2830 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Karagiannis, D., Carnevale, D., Astolfi, A.: Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans. Autom. Control 53(11), 2602–2615 (2008). doi: 10.1109/TAC.2008.2007045 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kazraji, S.M., Soflayi, R.B., Sharifian, M.B.B.: Sliding-mode observer for speed and position sensorless control of linear-PMSM. Electr. Control Commun. Eng. 5(1), 20–26 (2014)Google Scholar
  9. 9.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (1996)Google Scholar
  10. 10.
    Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–995 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Luenberger, D.G.: Observing the state of linear system. IEEE Trans. Mil. Electron 8(2), 74–80 (1964)CrossRefGoogle Scholar
  12. 12.
    Marconi, L., Praly, L., Isidori, A.: Output stabilization via nonlinear Luenberger observers. SIAM J. Control Optim. 45(6), 2277–2298 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Naifar, O., Boukettaya, G., Oualha, A., Ouali, A.: A comparative study between a high-gain interconnected observer and an adaptive observer applied to IM-based WECS. Eur. Phys. J. Plus 130(5), 1–13 (2015)CrossRefGoogle Scholar
  14. 14.
    Periasamy, V., Tade, M.: An adaptive non-linear observer for the estimation of temperature distribution in the planar solid oxide fuel cell. Journal (2013)Google Scholar
  15. 15.
    Pertew, A.M., Marquezz, H.J., Zhao, Q.: H\(\infty \) observer design for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 51(7), 1211–1216 (2006). doi: 10.1109/TAC.2006.878784 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Poznyak, A.S., Sanchez, E., Palma, O., Yu, W.: Robust asymptotic neuro observer with time delay term. In: Proceedings of the 2000 IEEE International Symposium on Intelligent Control, 2000, pp. 19–24. IEEE (2000)Google Scholar
  17. 17.
    Prasov, A.A., Khalil, H.K.: A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Trans. Autom. Control 58(3), 569–580 (2013). doi: 10.1109/TAC.2012.2218063 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Resendiz, J., Yu, W., Fridman, L.: Two-stage neural observer for mechanical systems. IEEE Trans. Circuits Syst. II Express Br. 55(10), 1076–1080 (2008). doi: 10.1109/TCSII.2008.2001962
  19. 19.
    Solsona, J.A., Valla, M.I.: Disturbance and nonlinear Luenberger observers for estimating mechanical variables in permanent magnet synchronous motors under mechanical parameters uncertainties. IEEE Trans. Ind. Electron. 50(4), 717–725 (2003). doi: 10.1109/TIE.2003.814866 CrossRefGoogle Scholar
  20. 20.
    Stamnes, Ø.N., Aamo, O.M., Kaasa, G.O.: Adaptive redesign of nonlinear observers. IEEE Trans. Autom. Control 56(5), 1152–1157 (2011). doi: 10.1109/TAC.2011.2107090 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tyukina, I.Y., Steurb, E., Nijmeijerc, H., Van Leeuwen, C.: Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters. Automatica 49(8), 2409–2423 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Willems, J.C.: Least squares optimal control and algebraic Riccati equations. IEEE Trans. Autom. Control 16(6), 621–634 (1971). doi: 10.1109/TAC.1971.1099831 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wimmer, H.K.: Monotonicity of maximal solutions of algebraic Riccati equations. Syst. Control Lett. 5(5), 317–319 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xingling, S., Honglum, W.: Trajectory linearization control based output tracking method for nonlinear uncertain system using linear extended state observer. Asian J. Control 18(1), 316–327 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zeitz, M.: The extended Luenberger observer for nonlinear systems. Syst. Control Lett. 9(2), 149–156 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhao, C.R., Xie, X.J.: Output feedback stabilization using small-gain method and reduced-order observer for stochastic nonlinear systems. IEEE Trans. Autom. Control 58(2), 523–529 (2013). doi: 10.1109/TAC.2012.2208313 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhu, F., Xu, J., Chen, M.: The combination of high-gain sliding mode observers used as receivers in secure communication. IEEE Trans. Circuits Syst. I Regul. Pap. 59(11), 2702–2712 (2012). doi: 10.1109/TCSI.2012.2190570

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Control AutomaticoCINVESTAV-IPNMexico CityMexico

Personalised recommendations