An Adaptive Finite Time Sliding Mode Observer

  • Dongya ZhaoEmail author
  • Sarah K. Spurgeon
  • Xinggang Yan


This chapter develops a novel adaptive finite time observer which can achieve finite time unmatched parameter estimation and finite time system state observation. The proposed approach has strong robustness and rapid convergence. A step by step proof is given which employs finite time stability and sliding mode principles. It is seen that the method also enables lumped matched uncertainty to be estimated. An illustrative example is used to validate the effectiveness of the proposed approach.


Adaptive Finite-time Sliding Mode Observer Unmatched Uncertainties Equivalent Injection Auxiliary Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbaszadeh, M., Marquez, H.J.: Robust \(H\infty \) observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models. Automatica 44(3), 799–806 (2008)Google Scholar
  2. 2.
    Adetola, V., Guay, M.: Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Trans. Autom. Control 53(3), 807–811 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besancon, G.: Nonlinear Observers and Applications. Springer, Berlin (2007)zbMATHGoogle Scholar
  4. 4.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, C.T.: Linear System Theory and Design. Holt, Rinehart, and Winston, New York (1984)Google Scholar
  6. 6.
    Daly, J.M., Wang, D.W.L.: Output feedback sliding mode control in the presence of unknown disturbances. Syst. Control Lett. 58(3), 188–193 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)Google Scholar
  8. 8.
    Khalil, H.K., Laurent, P.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lee, P.L.: Nonlinear Process Control. Springer, London (1993)CrossRefGoogle Scholar
  10. 10.
    Li, S., Sun, H., Yang, J., Yu, X.: Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans. Autom. Control 60(1), 277–282 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Na, J., Mahyuddin, M.N., Herrmann, G., Ren, X., Barber, P.: Robust adaptive finite - time parameter estimation and control for robotic systems. Int. J. Robust Nonlinear Control 25(16), 3045–3071 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Patton, R., Chen, J.: Observer-based fault detection and isolation: robustness and applications. Control Eng. Pract. 5(5), 671–682 (1997)CrossRefGoogle Scholar
  13. 13.
    Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: American Control Conference, pp. 5183–5188 (2006)Google Scholar
  14. 14.
    Slotine, J.J.E., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. In: American Control Conference, pp. 1794–1800 (1986)Google Scholar
  15. 15.
    Spurgeon, S.K.: Sliding mode observers: a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tsui, C.C.: Observer design survey. Int. J. Autom. Comput. 12(1), 50–61 (2015)CrossRefGoogle Scholar
  17. 17.
    Velardi, S.A., Hammouri, H., Barresi, A.A.: In-line monitoring of the primary drying phase of the freeze-drying process in vial by means of a Kalman filter based observer. Chem. Eng. Res. Des. 87(10A), 1409–1419 (2009)CrossRefGoogle Scholar
  18. 18.
    Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zeitz, M.: The extended Luenberger observer for nonlinear systems. Syst. Control Lett. 9(2), 149–156 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhao, D., Li, S., Zhu, Q.: Output feedback terminal sliding mode control for a class of second order nonlinear systems. Asian J. Control 15(1), 237–247 (2013)Google Scholar
  21. 21.
    Zhao, D., Spurgeon, S.K., Yan, X.: Adaptive output feedback finite time control for a class of second order nonlinear systems. In: International Workshop on Variable Structure Systems, pp. 53–58 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Chemical Equipment and Control EngineeringChina University of PetroleumHuangdao DistrictChina
  2. 2.Department of Electronic and Electrical EngineeringUniversity College LondonTorrington PlaceUK
  3. 3.School of Engineering and Digital ArtsUniversity of KentCanterburyUK

Personalised recommendations