\({{\mathcal H}}_{\infty }\)- Stabilization of a 3D Bipedal Locomotion Under a Unilateral Constraint

  • Oscar Montano
  • Yury OrlovEmail author
  • Yannick Aoustin
  • Christine Chevallereau


The applicability of the \(\mathcal {H}_\infty \) control technique to a fully actuated 3D biped robot is addressed. In contrast to previous studies, this investigation contributes to the study of robustness of bipedal locomotion while assuming an imperfect knowledge of the restitution rule at the collision time instants in addition to external disturbance forces applied during the single support phases. Performance issues are illustrated in a numerical study performed with an emulator of the 32-DOF biped robot ROMEO, of Aldebaran Robotics.



The authors acknowledge the financial support of ANR Chaslim grant and CONACYT grant no.165958.


  1. 1.
    Aoustin, Y., Formalsky, A.: Control design for a biped: reference trajectory based on driven angles as functions of the undriven angle. J. Comput. Syst. Sci. Int. 42(4), 645–662 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baras, J., James, M.: Robust output feedback control for discrete-time nonlinear systems: the finite-time case. In: Proceedings of the 32nd IEEE Conference on Decision and Control, 1993, pp. 51–55. IEEE (1993)Google Scholar
  3. 3.
    Biemond, J., van de Wouw, N., Heemels, W., Nijmeijer, H.: Tracking control for hybrid systems with state-triggered jumps. IEEE Trans. Automat. Control 58(4), 876–890 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brogliato, B., Niculescu, S., Orhant, P.: On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Trans. Automat. Control 42(2), 200–215 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dai, H., Tedrake, R.: \(\cal{L}_2\)-gain optimization for robust bipedal walking on unknown terrain. In: IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 3116–3123. IEEE (2013)Google Scholar
  6. 6.
    Del Prete, A., Mansard, N.: Addressing constraint robustness to torque errors in task-space inverse dynamics. In: Robotics, Sciences and Systems 2015 (2015)Google Scholar
  7. 7.
    Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. 29(2), 28–93 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grishin, A., Formalsky, A., Lensky, A., Zhitomirsky, S.: Dynamic walking of a vehicle with two telescopic legs controlled by two drives. Int. J. Robot. Res. 13(2), 137–147 (1994)CrossRefGoogle Scholar
  9. 9.
    Haddad, W., Chellaboina, V., Nersesov, S.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press (2006)Google Scholar
  10. 10.
    Haddad, W., Kablar, N., Chellaboina, V., Nersesov, S.: Optimal disturbance rejection control for nonlinear impulsive dynamical systems. Nonlinear Anal. Theory, Methods Appl. 62(8), 1466–1489 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hamed, K., Grizzle, J.: Robust event-based stabilization of periodic orbits for hybrid systems: application to an underactuated 3D bipedal robot. In: Proceedings of the 2013 American Control Conference (2013)Google Scholar
  12. 12.
    Heemels, W., Brogliato, B.: The complementarity class of hybrid dynamical systems. Eur. J. Control 9(2), 322–360 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hespanha, J.P., Liberzon, D., Teel, A.R.: Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44(11), 2735–2744 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hill, D., Moylan, P.: Connections between finite-gain and asymptotic stability. IEEE Trans. Autom. Control 25(5), 931–936 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khalil, W., Kleinfinger, J.: A new geometric notation for open and closed-loop robots. In: Proceedings of the 1986 IEEE International Conference on Robotics and Automation 1986, vol. 3, pp. 1174–1179. IEEE (1986)Google Scholar
  16. 16.
    Lin, W., Byrnes, C.: \(\cal{H}_\infty \)-control of discrete-time nonlinear systems. IEEE Trans. Autom. Control 41(4), 494–510 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Luh, J., Walker, M., Paul, R.: Resolved-acceleration control of mechanical manipulators. IEEE Trans. Autom. Control 25(3), 468–474 (1980)CrossRefzbMATHGoogle Scholar
  18. 18.
    Miossec, S., Aoustin, Y.: A simple stability study for a biped walk with under and over actuated phases. In: Proceedings of the Fourth International Workshop on Robot Motion and Control, 2004, RoMoCo 2004, pp. 53–59. IEEE (2004)Google Scholar
  19. 19.
    Montano, O., Orlov, Y., Aoustin, Y.: Nonlinear \(\cal{H}_\infty \)-control of mechanical systems under unilateral constraints. In: Proceedings of the 9th World Congress of the International Federation of Automatic Control (IFAC 2014) (2014)Google Scholar
  20. 20.
    Montano, O., Orlov, Y., Aoustin, Y.: Nonlinear \(h\infty \)-control under unilateral constraints. Int. J. Control 89(12), 1–23 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Montano, O., Orlov, Y., Aoustin, Y., Chevallereau, C.: Nonlinear orbital \(\cal{H}_\infty \)-stabilization of underactuated mechanical systems with unilateral constraints. In: Proceedings of the 14th European Control Conference, pp. 800–805 (2015)Google Scholar
  22. 22.
    Montano, O., Orlov, Y., Aoustin, Y., Chevallereau, C.: Orbital stabilization of an underactuated bipedal gait via nonlinear \(\cal{H}_\infty \)-control using measurement feedback. Auton. Robot. 1–19 (2016). doi: 10.1007/s10514-015-9543-z
  23. 23.
    Montano, O., Orlov, Y., Aoustin, Y., Chevallereau, C.: Robust stabilization of a fully actuated 3D bipedal locomotion via nonlinear \(\cal{H}\infty \)-control under unilateral constraints. In: Proceedings of the IEEE-RAS 16th International Conference on Humanoid Robots. IEEE (2016)Google Scholar
  24. 24.
    Nesic, D., Zaccarian, L., Teel, A.: Stability properties of reset systems. Automatica 44(8), 2019–2026 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nikkhah, M., Ashrafiuon, H., Fahimi, F.: Robust control of underactuated bipeds using sliding modes. Robotica 25(03), 367–374 (2007)CrossRefGoogle Scholar
  26. 26.
    Orlov, Y.: Discontinuous Systems–Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Springer (2009)Google Scholar
  27. 27.
    Orlov, Y., Aguilar, L.: Advanced \(\cal{H}_\infty \) Control-Towards Nonsmooth Theory and Applications. Birkhauser, Boston (2014)zbMATHGoogle Scholar
  28. 28.
    Oza, H., Orlov, Y., Spurgeon, S., Aoustin, Y., Chevallereau, C.: Finite time tracking of a fully actuated biped robot with pre-specified settling time: a second order sliding mode synthesis. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2570–2575. IEEE (2014)Google Scholar
  29. 29.
    Posa, M., Tobenkin, M., Tedrake, R.: Stability analysis and control of rigid-body systems with impacts and friction. IEEE Trans. Autom. Control 61(6), 1423–1437 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Prete, A.D., Mansard, N.: Robustness to joint-torque-tracking errors in task-space inverse dynamics. IEEE Trans. Robot. 32(5), 1091–1105 (2016)CrossRefGoogle Scholar
  31. 31.
    Rengifo, C., Aoustin, Y., Plestan, F., Chevallereau, C., et al.: Contact forces computation in a 3D bipedal robot using constrained-based and penalty-based approaches. In: Proceedings of Multibody Dynamics (2011)Google Scholar
  32. 32.
    Robotics, A.: Project romeo. (2016). Accessed 01 July 2016
  33. 33.
    Tlalolini, D., Aoustin, Y., Chevallereau, C.: Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Sys. Dyn. 23(1), 33–56 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Van Zutven, P., Kostic, D., Nijmeijer, H.: On the stability of bipedal walking. In: Simulation, Modeling, and Programming for Autonomous Robots, p. 521 (2010)Google Scholar
  35. 35.
    Walker, M., Orin, D.: Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control 104(3), 205–211 (1982)CrossRefzbMATHGoogle Scholar
  36. 36.
    Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC press, Boca Raton (2007)Google Scholar
  37. 37.
    Willems, J.: Dissipative dynamical systems part 1: general theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)CrossRefzbMATHGoogle Scholar
  38. 38.
    Yuliar, S., James, M., Helton, J.: Dissipative control systems synthesis with full state feedback. Math. Control Signals Syst. 11(4), 335–356 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yunt, K., Glocker, C.: Trajectory optimization of mechanical hybrid systems using sumt. In: 9th IEEE International Workshop on Advanced Motion Control, pp. 665–671. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Oscar Montano
    • 1
  • Yury Orlov
    • 1
    Email author
  • Yannick Aoustin
    • 2
  • Christine Chevallereau
    • 2
  1. 1.CICESEEnsenadaMexico
  2. 2.LS2N, UMR CNRS 6004, École CentraleUniversity of NantesNantes Cedex 3France

Personalised recommendations