Finite-Time Sliding Mode Controller with State-Dependent Gain Parameter

  • Cesar U. SolisEmail author
  • Julio B. Clempner


This brief text proposes a state-dependent gain parameter added to a Fast Terminal Sliding Mode Control in order to restrict the input signal amplitude. The suggested controller involves the following properties: convergence in finite time to the equilibrium point, robustness against bounded persistent state perturbations and uncertainties in the model. In order to exemplify the contributions we exhibit an application to an underactuated rotational inverted pendulum, to stabilize it upwards.


State-dependent Gain Fast Terminal Sliding Mode Control (FTSMC) Rotational Inverted Pendulum Furuta Pendulum Terminal Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Azar, A.T., Serrano, F.E.: Adaptive sliding mode control of the furuta pendulum. In: Advances and Applications in Sliding Mode Control systems, pp. 1–42. Springer, Berlin (2015)Google Scholar
  2. 2.
    Brunovskỳ, P.: A classification of linear controllable systems. Kybernetika 6(3), 173–188 (1970)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cheng, Y.: Nonsingular fast terminal sliding mode controller based on states in nonlinear system. In: 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1, pp. 262–264. IEEE, New York (2012)Google Scholar
  4. 4.
    Cruz-Zavala, E., Moreno, J.A., Fridman, L.: Fast second-order sliding mode control design based on lyapunov function. In: 52nd IEEE Conference on Decision and Control, pp. 2858–2863. IEEE, New York (2013)Google Scholar
  5. 5.
    Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jadlovskỳ, S., Sarnovskỳ, J.: Modelling of classical and rotary inverted pendulum systems-a generalized approach. J. Electr. Eng. 64(1), 12–19 (2013)Google Scholar
  7. 7.
    Khanesar, M.A., Teshnehlab, M., Shoorehdeli, M.A.: Sliding mode control of rotary inverted pendulm. In: Mediterranean Conference on Control & Automation, 2007. MED’07. pp. 1–6. IEEE, New York (2007)Google Scholar
  8. 8.
    Meiss, J.D.: Differential Dynamical Systems, vol. 14. SIAM (2007)Google Scholar
  9. 9.
    Mobayen, S., Tchier, F.: A new lmi-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems. Kybernetika 51(6), 1035–1048 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Nemytskii, V.V.: Qualitative Theory of Differential Equations. Princeton University Press, Princeton (2015)Google Scholar
  11. 11.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Poznyak, A.: Advanced Mathematical Tools for Control Engineers: Volume 1: Deterministic Systems, vol. 1. Elsevier, Amsterdam (2010)Google Scholar
  13. 13.
    Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman, L.M., Poznyak, A.S.: Super-twisting adaptive sliding mode control: A lyapunov design. In: CDC, pp. 5109–5113 (2010)Google Scholar
  14. 14.
    Solis, C.U., Clempner, J.B., Poznyak, A.: Fast terminal sliding mode control with integral filter applied to a van der pol oscillator. IEEE Trans. Indust. Electron. PP(99), 1 (2017). doi: 10.1109/TIE.2017.2677299
  15. 15.
    Solis, C.U., Clempner, J.B., Poznyak, A.S.: Designing a terminal optimal control with an integral sliding mode component using a saddle point method approach: a cartesian 3d-crane application. Nonlinear Dyn. 86(2), 911 (2016). doi: 10.1007/s11071-016-2932-9
  16. 16.
    Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Venkataraman, S., Gulati, S.: Control of nonlinear systems using terminal sliding modes. J. Dyn. Syst. Meas. Control 115(3), 554–560 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 34(5), 281–287 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yu, X., Zhihong, M.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst.\(^2\)I Fundem. Theory Appl. 49(2) (2002)Google Scholar
  21. 21.
    Zhihong, M., Yu, X.H.: Terminal sliding mode control of mimo linear systems. In: Proceedings of the 35th IEEE Conference on Decision and Control, 1996, vol. 4, pp. 4619–4624. IEEE, New York (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Control Automático, CINVESTAV-IPNCiudad de MéxicoMéxico
  2. 2.Centro de Investigaciones Económicas, Administrativas y SocialesInstituto Politécnico NacionalCiudad de MéxicoMéxico

Personalised recommendations