Adaptive Sliding Mode Control Using Monitoring Functions

  • Liu Hsu
  • Tiago Roux OliveiraEmail author
  • Gabriel Tavares Melo
  • José Paulo V. S. Cunha


In this chapter, we propose an adaptive sliding mode control approach based on monitoring functions, to deal with disturbances of unknown bounds. An uncertain linear system is considered as well as a quite general class of non-smooth disturbances. Global tracking is demonstrated using only output feedback. The proposed adaptation method is able to make the control gain less conservative, but large enough when the disturbance grows and allows it to decrease if the latter vanishes, leading to reduced chattering effects. Simulations are presented to show the potential of the new adaptation scheme in this adverse scenario of possibly growing, temporarily large, or vanishing disturbances.


Adaptive Sliding Mode Controller Chatelier Effect Proposed Adaptation Method Output Feedback MRAC Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Brazilian funding agencies CAPES, CNPq and FAPERJ for the financial support.


  1. 1.
    Bartolini, G., Levant, A., Plestan, F., Taleb, M., Punta, E.: Adaptation of sliding modes. IMA J Math. Control Inf. 30(3), 285–300 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cunha, J.P.V.S., Hsu, L., Costa, R.R., Lizarralde, F.: Output-feedback model-reference sliding mode control of uncertain multivariable systems. IEEE Trans. Autom. Control 48(12), 2245–2250 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cunha, J.P.V.S., Costa, R.R., Hsu, L.: Design of first-order approximation filters for sliding-mode control of uncertain systems. IEEE Trans. Ind. Electron. 55(11), 4037–4046 (2008)CrossRefGoogle Scholar
  4. 4.
    Edwards, C., Shtessel, Y.B.: Adaptive continuous higher order sliding mode control. Automatica 65, 183–190 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Estrada, A., Plestan, F., Allouche, B.: An adaptive version of a second order sliding mode output feedback controller. In: 2013 European Control Conference (ECC), pp. 3228–3233. IEEE, Zurich, Switzerland (2013)Google Scholar
  6. 6.
    Filippov, A.F.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Transl. 42(2), 199–231 (1964)zbMATHGoogle Scholar
  7. 7.
    Hsu, L., Araújo, A.D., Costa, R.R.: Analysis and design of I/O based variable structure adaptive control. IEEE Trans. Autom. Control 39(1), 4–21 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hsu, L., Lizarralde, F., Araújo, A.D.: New results on output-feedback variable structure model-reference adaptive control: design and stability analysis. IEEE Trans. Autom. Control 42(3), 386–393 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hsu, L., Costa, R.R., Cunha, J.P.V.S.: Model-reference output-feedback sliding mode controller for a class of multivariable nonlinear systems. Asian J. Control 5(4), 543–556 (2003)CrossRefGoogle Scholar
  10. 10.
    Hsu, L., Oliveira, T.R., Cunha, J.P.V.S.: Extremum seeking control via monitoring function and time-scaling for plants of arbitrary relative degree. In: Proceedings 13\(^{th}\) International Workshop on Variable Structure System, Nantes, pp. 1–6 (2014)Google Scholar
  11. 11.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice-Hall, Upper Saddle River (1996)zbMATHGoogle Scholar
  12. 12.
    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  13. 13.
    Moreno, J.A., Negrete, D.Y., Torres-González, V., Fridman, L.: Adaptive continuous twisting algorithm. Int. J. Control. 89(9), 1798–1806 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Oliveira, T.R., Peixoto, A.J., Nunes, E.V.L., Hsu, L.: Control of uncertain nonlinear systems with arbitrary relative degree and unknown control direction using sliding modes. Int. J. Adapt. Control. Signal Process 21(8/9), 692–707 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Oliveira, T.R., Leite, A.C., Peixoto, A.J., Hsu, L.: Overcoming limitations of uncalibrated robotics visual servoing by means of sliding mode control and switching monitoring scheme. Asian J. Control 16(3), 752–764 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Oliveira, T.R., Cunha J.P.V.S., Hsu, L.: Adaptive sliding mode control for disturbances with unknown bounds. In: Proceedings 14th International Workshop on Variable Structure Systems, Nanjing, Jiangsu, China, pp. 59–64 (2016)Google Scholar
  17. 17.
    Plestan, F., Shtessel, Y., Brégeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Utkin, V.I.: Sliding Modes and Their Application in Variable Structure Systems. MIR Publishers, Moscow (1978)zbMATHGoogle Scholar
  19. 19.
    Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yan, L., Hsu, L., Xiuxia, S.: A variable structure MRAC with expected transient and steady-state performance. Automatica 42(5), 805–813 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yan, L., Hsu, L., Costa, R.R., Lizarralde, F.: A variable structure model reference robust control without a prior knowledge of high frequency gain sign. Automatica 44(4), 1036–1044 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Liu Hsu
    • 1
  • Tiago Roux Oliveira
    • 2
    Email author
  • Gabriel Tavares Melo
    • 2
  • José Paulo V. S. Cunha
    • 2
  1. 1.COPPE/Federal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.State University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations