Skip to main content

Abstract

Cooling as well as heating circuits can be modeled as a network of elements that obey mass, momentum, and energy balance laws. Typical elements in such circuits are pipes, regulated pumps, regulated (multi-way) valves, and energy exchangers. For these elements, we give an overview of the modeling process including the basics of the continuum mechanics of fluids, together with simplifying assumptions that are practically acceptable. Moreover, we consider the modeling of network domains and the numerical treatment of the problem. The overview is designed for a reader interested in the implementation of the presented methods. We also address deep coupling of the simulation with optimization algorithms. For this purpose, we show how a model needs to be set up in order for Newton-type solvers and interior point methods to be applicable to it. The introduction of the model is complemented in (T. Clees et al., Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham, 2017) by a very detailed case study conducted on a real system, being part of a supercomputing center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Brkić, Review of explicit approximations to the Colebrook relation for flow friction. J. Pet. Sci. Eng. 77 34–48, (2011)

    Article  Google Scholar 

  2. K. Cassirer, T. Clees, B. Klaassen, I. Nikitin, L. Nikitina, MYNTS User’s Manual, Release 3.7, Fraunhofer SCAI, Sankt Augustin, Germany, http://www.scai.fraunhofer.de/mynts, Dec. 2015

  3. T. Clees, N. Hornung, D. Labrenz, et al., Cooling circuit simulation II: A numerical example, in Scientific Computing and Algorithms in Industrial Simulations, ed. by M. Griebel, A. Schüller, M.A. Schweitzer (Springer, Cham, 2017). doi:10.1007/978-3-319-62458-7

    Google Scholar 

  4. A.P. Colburn, Mean temperature difference and heat transfer coefficient in liquid heat exchangers. Ind. Eng. Chem. 25, 873–877 (1933)

    Article  Google Scholar 

  5. C.F. Colebrook, Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 11, 133–156 (1939)

    Article  Google Scholar 

  6. Grundfos Product Center, http://product-selection.grundfos.com/. Accessed 13 Nov 2015

  7. M.E. Gurtin, An Introduction to Continuum Mechanics. Mathematics in Science and Engineering, vol. 158 (Elsevier, Amsterdam, 1981)

    Google Scholar 

  8. F.H. Harlow, J.E. Welsh, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. KSB Aktiengesellschaft, Auslegung von Kreiselpumpen, 5th edn. (KSB Aktiengesellschaft, Frankenthal, 2005)

    Google Scholar 

  10. J. Mischner, Zur Ermittlung der Rohrreibungszahl, in gas2energy.net: Systemplanerische Grundlagen der Gasversorgung (Oldenbourg Industrieverlag, München, 2011), pp. 402–420

    Google Scholar 

  11. B.-U. Rogalla, A. Wolters, Slow transients in closed conduit flow–Part I numerical methods, in Computer Modeling of Free-Surface and Pressurized Flows, ed. by M.H. Chaudhry, L.W. Mays, NATO ASI Series, vol. 274 (Springer, Dordrecht, 1994), pp. 613–642

    Google Scholar 

  12. M. Schmidt, M.C. Steinbach, B.M. Willert, High detail stationary optimization models for gas networks. Optim. Eng. 16, 131–164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. V.D. Stevanovic, B. Zivkovic, S. Prica, et al., Prediction of thermal transients in district heating systems. Energy Convers. Manag. 50, 2167–2173 (2009)

    Article  Google Scholar 

  14. VDI, Strömungstechnische Kenngrößen von Stellventilen und deren Bestimmung, VDI/VDE 2173 (Verein deutscher Ingenieure, Verband deutscher Elektrotechniker, Berlin, 1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Clees .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Clees, T., Hornung, N., Alvarez, É.L., Nikitin, I., Nikitina, L., Torgovitskaia, I. (2017). Cooling Circuit Simulation I: Modeling. In: Griebel, M., Schüller, A., Schweitzer, M. (eds) Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham. https://doi.org/10.1007/978-3-319-62458-7_4

Download citation

Publish with us

Policies and ethics