Polymeric Nanocomposites for Visible-Light-Induced Photocatalysis

  • Chin Wei Lai
  • Kian Mun Lee
  • Joon Ching JuanEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


TiO2 photocatalysts have been applied in treating wide range of organic contaminants, ranging from dye effluents to persistent organic pollutants. Discharging of those contaminants has polluted our natural water resources and reduced the quality and quantity of the clean water for our daily usage. Although TiO2 photocatalysts show high removal efficiency towards most of the pollutants, the fast recombination rate and large bandgap impede its practical use under visible light irradiation. Considerable efforts have been employed to immobilize TiO2 onto different substrates, particularly on polymer owing to their highly abundance and low cost. This chapter highlighted the various types of polymer-supported TiO2 photocatalyst in degrading organic pollutants.


Titanium dioxide Photocatalysis Visible light Polymer substrate Nanocomposites Photocatalytic oxidation 


  1. Abdelkader E, Nadjia L, Ahmed B (2015) Preparation and characterization of novel CuBi2O4/SnO2 p-n heterojunction with enhanced photocatalytic performance under UVA light irradiation. J King Saud Univ Sci 27:76–91CrossRefGoogle Scholar
  2. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55:678–705CrossRefGoogle Scholar
  3. Baruah S, Pal SK, Dutta J (2012) Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol Asia 2:90–102Google Scholar
  4. Beranek R, Macak JM, Gartner M, Meyer K, Schmuki P (2009) Enhanced visible light photocurrent generation at surface-modified TiO2 nanotube. Electrochim Acta 54:2640–2646CrossRefGoogle Scholar
  5. Buha J (2013) Photoluminescence study of carbon doped and hydrogen co-doped TiO2 thin films. Thin Solid Films 545:234–240CrossRefGoogle Scholar
  6. Cantarella M, Sanz R, Buccheri MA, Ruffino F, Rappazzo G, Scalese S, Impellizzeri G, Romano L, Privitera V (2016) Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J Photochem Photobiol A 321:1–11CrossRefGoogle Scholar
  7. Chan YL, Pung SY, Sreekantan S (2014) Synthesis of V2O5 nanoflakes on PET fiber as visible-light-driven photocatalysts for degradation of RhB dye. J Catal 2014, Article ID: 370696Google Scholar
  8. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol B 6:186–205CrossRefGoogle Scholar
  9. Chen J, Cen J, Xu X, Li X (2016) The application of heterogeneous visible light photocatalysts in organic synthesis. Catal Sci Technol 6:349–362CrossRefGoogle Scholar
  10. Chen Q, He QQ, Lv MM, Liu XT, Wang J, Lv JP (2014) The vital role of PANI for the enhanced photocatalytic activity of magnetically recyclable N-K2TiO4O9/MnFe2O4/PANI composites. Appl Surf Sci 311:230–238CrossRefGoogle Scholar
  11. Claverie J, Schaper F (2013) Ziegler-Natta catalysis: 50 years after the Nobel Prize. MRS Bull 38:213–218CrossRefGoogle Scholar
  12. Colombo DP, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449CrossRefGoogle Scholar
  13. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599CrossRefGoogle Scholar
  14. Damodar RA, Swaminathan T (2008) Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chem Eng J 144:59–66CrossRefGoogle Scholar
  15. Demir MM, Castignolles P, Akbey U, Wegner G (2007) In-situ bulk polymerization of dilute particle/MMA dispersions. Macromolecules 40:4190–4198CrossRefGoogle Scholar
  16. Dona M, Garriga C, Arãna J, Pérez J, Colón G, Macías M, Navio JA (2007) The effect of dosage on the photocatalytic degradation of organic pollutants. Res Chem Intermed 33:351–358CrossRefGoogle Scholar
  17. Djokić V, Vujović J, Marinković A, Petrović R, Janaćković D, Onjia A, Mijin D (2012) A study of the photocatalytic degradation of the textile dye CI Basic Yellow 28 in water using a P160 TiO2-based catalyst. J Serb Chem Soc 77:1747–1757CrossRefGoogle Scholar
  18. Dumitrescu I, Iordache O, Popescu A, Varzaru E, Kim S, Basim B, Ukelge G (2015) The photocatalytic effects of textile materials treated with TiO2 and Fe/TiO2. Ind Textila 66:297–305Google Scholar
  19. Dutschke A, Diegelmann C, Lobmann P (2003) Nucleation and growth of TiO2 thin films on modified polystyrene surfaces. 15:3501–3506Google Scholar
  20. Elfeky SA, Al-Sherbini AA (2011a) Photocatalytic decomposition of Trypan Blue over nanocomposite thin films. Kinet Catal 52:391–396CrossRefGoogle Scholar
  21. Elfeky SA, Al-Sherbini AA (2011) Photo-oxidation of Rhodamine-6-G via TiO2 and Au/TiO2-bound polythene beads. J Nanomater 2011, Article ID: 570438Google Scholar
  22. Evans RC, Douglas P, Burrow HD (2013) Applied photochemistry. Springer, DordrechtCrossRefGoogle Scholar
  23. Fabiyi ME, Skelton RL (2000) Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. J Photochem Photobiol A 132:121–128CrossRefGoogle Scholar
  24. Feldman D (1989) Polymeric building materials. Elsevier Applied Science, LondonGoogle Scholar
  25. Filippo E, Carlucci C, Capodilupo AL, Perulli P, Conciauro F, Corrente GA, Ciccarella G (2015) Facile preparation of TiO2-polyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity. Appl Surf Sci 331:292–298CrossRefGoogle Scholar
  26. Finch CA (1973) Polyvinyl alcohol properties and applications. Wiley, LondonGoogle Scholar
  27. Fostier AH, Pereira MSS, Rath S, Guimaraes JR (2008) Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 72:319–324CrossRefGoogle Scholar
  28. Fulay P (2016) Electronic, magnetic, and optical materials. CRC Press, Bosa RocaGoogle Scholar
  29. Ghezzar M, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2007) Gliding arc plasma assisted photocatalytic degradation of anthraquinonic Acid Green 25 in solution with TiO2. Appl Catal B Environ 72:304–313CrossRefGoogle Scholar
  30. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457CrossRefGoogle Scholar
  31. Gude K, Gun’ko VM, Blitz JP (2008) Adsorption and photocatalytic decomposition of methylene blue on surface modified silica and silica-titania. Colloids Surf A 325:17–20Google Scholar
  32. Hall RN (1952) Electron-hole recombination in germanium. Phys Rev 87:387CrossRefGoogle Scholar
  33. Han H, Bai R (2009) Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res 48:2891–2898CrossRefGoogle Scholar
  34. Han H, Bai R (2010) Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV-Vis and Vis lights. Sep Purif Technol 73:142–150CrossRefGoogle Scholar
  35. Han H, Bai RB (2011) The effect of thickness of photocatalyst film immobilized on a buoyant substrate on the degradation of methyl orange dye in aqueous solutions under different light irradiations. Ind Eng Chem Res 50:11922–11929CrossRefGoogle Scholar
  36. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: Challenges and opportunities. Phil Trans R Soc B 27:2115–2126CrossRefGoogle Scholar
  37. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N (2007) Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal. B Environ 74:53–62CrossRefGoogle Scholar
  38. Huang J, Rempel GL (1995) Ziegler-Natta catalysts for olefin polymerization: mechanistic insights from metallocene systems. Prog Polym Sci 20:459–526CrossRefGoogle Scholar
  39. Hugh S, Canonica L, Wegelin M, Gechter D, Von Guten U (2001) Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ Sci Technol 35:2114–2121CrossRefGoogle Scholar
  40. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRefGoogle Scholar
  41. Jin F, Cao J, Kishida H, Moriya T, Enomoto H (2007) Impact of phenolic compounds on hydrothermal oxidation of cellulose. Carbohydr Res 342:1129–1132CrossRefGoogle Scholar
  42. Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans 9:1413–1418CrossRefGoogle Scholar
  43. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324CrossRefGoogle Scholar
  44. Katoh R, Furube A (2011) Tunneling-type charge recombination in nanocrystalline TiO2 films at low temperature. J Phys Chem Lett 2:1888–1891CrossRefGoogle Scholar
  45. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464CrossRefGoogle Scholar
  46. Khan MM, Ansari SA, Pradhan D, Ansari MO, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644CrossRefGoogle Scholar
  47. Kharisov BI, Kharissova OV, Ortiz-Mendez U (2016) CRC concise encyclopedia of nanotechnology. CRC Press, Bosa RocaGoogle Scholar
  48. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Recent developments in titanium oxide-based photocatalysts. Appl Catal A Gen 325:1–14CrossRefGoogle Scholar
  49. Krysa J, Waldner G, Mestankova H, Jirkovsky J, Grabner G (2006) Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: roles of adsorption processes and mechanistic complexity. Appl Catal B Environ 64:290–301CrossRefGoogle Scholar
  50. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614CrossRefGoogle Scholar
  51. Kumar A, Sarmah S (2011) Photocatalytic activity of polyaniline-TiO2 nanocomposites. Indian J Phys 85:713–726CrossRefGoogle Scholar
  52. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448CrossRefGoogle Scholar
  53. Lee JU, Jung JW, Jo JW, Jo WH (2012) Degradation and stability of polymer-based solar cells. J Mater Chem 22:24265–24283CrossRefGoogle Scholar
  54. Lei P, Wang F, Gao X, Ding Y, Zhang S, Zhao J, Liu S, Yang M (2012) Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J Hazard Mater 227–228:185–194CrossRefGoogle Scholar
  55. Leng C, Wei J, Liu Z, Xiong R, Pan C, Shi J (2013) Facile synthesis of PANI-modified CoFe2O4-TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. J Nanopart Res 15:1643CrossRefGoogle Scholar
  56. Leung DYC, Fu XL, Wang CF, Ni M, Leung MKH, Wang X, Fu X (2010) Hydrogen production over titania-based photocatalysts. Chemsuschem 2:681–694CrossRefGoogle Scholar
  57. Li X, Li F, Fan C, Sun Y (2002) Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. Water Res 36:2215–2224CrossRefGoogle Scholar
  58. Li X, Teng W, Zhao Q, Wang L (2011) Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays. J Nanopart Res 13:6813–6820CrossRefGoogle Scholar
  59. Li X, Wang D, Cheng G, Luo Q, An J, Wang Y (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B 81:267–273CrossRefGoogle Scholar
  60. Lin H, Huang C, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11CrossRefGoogle Scholar
  61. Lipp-Symonowicz B, Sztainowski S, Kardas I (2006) Influence of UV radiation on the mechanical properties of polyamide and polypropylene fibres in aspect of their restructuring. AUTEX Res J 6:196–203Google Scholar
  62. Liu X, Chen Q, Lv L, Feng X, Meng X (2015a) Preparation of transparent PVA/TiO2 nanocomposite films with enhanced visible-light photocatalytic activity. Catal Commun 58:30–33CrossRefGoogle Scholar
  63. Liu B, Fang Y, Li Z, Xu S (2015b) Visible-light nanostructured photocatalysts: a review. J Nanosci Nanotechnol 15:889–920CrossRefGoogle Scholar
  64. Lopez-Munoz MJ, Grieken RV, Aguado J, Marugan J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314CrossRefGoogle Scholar
  65. Luo HM, Takata T, Lee YG, Zhao JF, Domen K, Yan YS (2004) Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16:846–849CrossRefGoogle Scholar
  66. Luzuriaga S, Kovarova J, Fortelny I (2006) Degradation of pre-aged polymers exposed to simulated recycling: properties and thermal stability 91:1226–1232Google Scholar
  67. Ma CM, Lee YW, Hong GB, Shie JL, Chang CT (2011) Effect of platinum on the photocatalytic degradation of chlorinated organic compound. J Environ Sci 23:687–692CrossRefGoogle Scholar
  68. Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6:1–11Google Scholar
  69. Magalhaes F, Lago RM (2009) Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Sol Energy 83:1521–1526CrossRefGoogle Scholar
  70. Magalhães F, Moura FCC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276:266–271CrossRefGoogle Scholar
  71. Mahmoodi NM, Arami M (2006) Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium(IV) oxide nanoparticles. J Photochem Photobiol A 182:60–66CrossRefGoogle Scholar
  72. Mamba G, Mishra A (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377CrossRefGoogle Scholar
  73. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13:3516–3523CrossRefGoogle Scholar
  74. Mansilla HD, Bravo C, Ferreyra R, Litter MI, Jardim WF, Lizama C, Freer J, Fernandez J (2006) Photocatalytic EDTA degradation on suspended and immobilized TiO2. J Photochem Photobiol A 181:188–194CrossRefGoogle Scholar
  75. Martha S, Das D, Biswal N, Parida K (2012) Facile synthesis of visible light responsive V2O5/N, S-TiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation. J Mater Chem 22:10695–10703CrossRefGoogle Scholar
  76. Masid S, Tayade R, Rao NN (2015) Efficient visible light active polyaniline/TiO2 nanocomposite photocatalyst for degradation of Reactive Blue 4. Int J Photocatalysis Photon 119:190–203Google Scholar
  77. Matos J, Laine J, Herrmann J-M, Uzcategui D, Brito JL (2007) Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl Catal B Environ 70:461–469CrossRefGoogle Scholar
  78. Mehmood CT, Qazi IA, Baig MA, Arshad M, Quddos A (2015) Application of photodegraded polythene films for the treatment of Drimarene Brilliant Red (DBR) dye. Int Biodeterior Biodegradation 102:31–39CrossRefGoogle Scholar
  79. Meichtry JM, Lin HJ, de la Fuente L, Levy IK, Gautier EA, Blesa MA, Litter M (2007) Low-cost TiO2 photocatalytic technology for water potabilization in plastic bottles for isolated regions. Photocatalyst fixation. J Sol Energy Eng 129:119–126CrossRefGoogle Scholar
  80. Mendive CB, Hansmann D, Bredow T, Bahnemann D (2011) New insights into the mechanism of TiO2 photocatalysis: thermal processes beyond the electron-hole creation. J Phys Chem C 115:19676–19685CrossRefGoogle Scholar
  81. Moore EP (1996) Polypropylene Handbook. Polymerization, Characterization, Properties, Processing, Applications. Hanser Publishers, New YorkGoogle Scholar
  82. Mukherjee D, Barghi S, Ray AK (2014) Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light. Processes 2:12–23CrossRefGoogle Scholar
  83. Murugan E, Rangasamy R (2011) Development of stable pollution free TiO2/Au nanoparticle immobilized green photo catalyst for degradation of methyl orange. J Biomed Nanotechnol 7:225–228CrossRefGoogle Scholar
  84. Navarro Yerga RM, Alvarez Galvan MC, Del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. Chemsuschem 2:471–485CrossRefGoogle Scholar
  85. Ni M, Leung KH, Leung DYC, Sumathy K (2007) A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRefGoogle Scholar
  86. Nursam NM, Wang X, Caruso RA (2015) High-throughput synthesis and screening of titania-based photocatalysts. ACS Comb Sci 17:548–569CrossRefGoogle Scholar
  87. Ochieng A, Maurice SO, Thabo B (2017) Photocatalytic degradation of aromatic compounds in abattoir wastewater. Int J Environ Sustain 13:17–30Google Scholar
  88. Ohama Y, Van Gemert D (2011) Application of titanium dioxide photocatalysis to construction materials: State-of-the-art report of the RILEM Technical Committee 194-TDP, vol 5. Springer Science & Business Media, DordrechtCrossRefGoogle Scholar
  89. Ohkura Y (2013) Synthesis and optical ignition of aluminum and silicon-based. Stanford University. Retrieved from
  90. Ohtani B (2013) Titania photocatalysis beyond recombination: a critical review. Catalysts 3:942–953CrossRefGoogle Scholar
  91. Omar AS (1989) Polyethylene-coated urea. 1. Improved storage and handling properties. Ind Eng Chem Res 28:630–632CrossRefGoogle Scholar
  92. Panda S (2009) Microelectronics and optoelectronics technology. Laxmi Publications, New DelhiGoogle Scholar
  93. Peerakiatkhajohn P, Onreabroy W, Chawengkijwanich C, Chiarakorn S (2011) Preparation of visible-light-responsive TiO2 doped Ag thin film on PET plastic for BTEX treatment. J Sustain Energy Environ 2:121–125Google Scholar
  94. Portjanskaja E, Krichevskaya M, Preis S, Kallas J (2004) Photocatalytic oxidation of humic substances with TiO2-coated glass micro-spheres. Environ Chem Lett 2:123–127CrossRefGoogle Scholar
  95. Portjanskaja E, Preis S, Kallas J (2006) Aqueous photocatalytic oxidation of lignin and humic acids with supported TiO2. Int J Photoenergy 2006, Article ID: 85927Google Scholar
  96. Qamar M, Drmosh Q, Ahmed MI, Qamaruddin M, Yamani ZH (2015) Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res Lett 10:1–6CrossRefGoogle Scholar
  97. Razak S, Nawi MA, Haitham K (2014) Fabrication, characterization and application of a reusable immobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dye. Appl Surf Sci 319:90–98CrossRefGoogle Scholar
  98. Regonini D, Jaroenworaluck A, Stevens R, Bowen CR (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal 42:139–144CrossRefGoogle Scholar
  99. Rengaraj S, Li XZ (2006) Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension. J Mol Catal A Chem 243:60–67CrossRefGoogle Scholar
  100. Riaz U, Ashraf S, Kashyap J (2015) Role of conducting polymers in enhancing TiO2-based photocatalytic dye degradation: a short review. Polym Plast Technol Eng 54:1850–1870CrossRefGoogle Scholar
  101. Ryu CS, Kim MS, Kim BW (2003) Photodegradation of alachlor with the TiO2 film immobilised on the glass tube in aqueous solution. Chemosphere 53:765–771CrossRefGoogle Scholar
  102. Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. Environ Sci Technol 38:2928–2933CrossRefGoogle Scholar
  103. Sachon E, Matheron L, Clodic G, Blasco T, Bolbach G (2010) MALDI TOF-TOF characterization of a light stabilizer polymer contaminant from polypropylene or polyethylene plastic test tubes. J Mass Spectrom 45:43–50Google Scholar
  104. Sahoo DP, Rath D, Nanda B, Parida K (2015) Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: a review. RSC Adv 5:83707–83724CrossRefGoogle Scholar
  105. Sakar M, Balakumar S, Saravanan P, Bharathkumar S (2016) Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures. Nanoscale 8:1147–1160Google Scholar
  106. Salem MA, Al-Ghonemiy AF, Zaki AB (2009) Photocatalytic degradation of allura red and quinoline yellow with polyaniline/TiO2 nanocomposite. Appl Catal B Environ 91:59–66CrossRefGoogle Scholar
  107. Saxena SK (2004) Polyvinyl alcohol (PVA). Chem Tech Assess 2004. In: 61st Joint expert committee of food additives, pp 3–5Google Scholar
  108. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  109. Sellappan R (2013) Mechanisms of enhanced activity of model TiO2/carbon and TiO2/metal nanocomposite photocatalysts. Chalmers University of Technology, GöteborgGoogle Scholar
  110. Serpone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New YorkGoogle Scholar
  111. Shahabuddin S, Sarih NM, Ismail FH, Shahid MM, Huang NM (2015) Synthesis of chitosan grafted-polyaniline/Co3O4nanocubenanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv 5:83857–83867CrossRefGoogle Scholar
  112. Shahabuddin S, Muhamad Sarih N, Mohamad S, Juan JC (2016) SrTiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers 8:27CrossRefGoogle Scholar
  113. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, Yehye WA (2014) The influence of ziegler-natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7:5069–5108CrossRefGoogle Scholar
  114. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389:1–8CrossRefGoogle Scholar
  115. Shironita S, Mori K, Shimizu T, Ohmichi T, Mimura N, Yamashita H (2008) Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Appl Surf Sci 254:7604–7607CrossRefGoogle Scholar
  116. Shockley W, Read W Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835CrossRefGoogle Scholar
  117. Singh S, Singh PK, Mahalingam H (2015) A novel and effective strewn polymer-supported titanium dioxide photocatalyst for environmental remediation. J Mater Environ Sci 6:349–358Google Scholar
  118. Skinner DE, Colombo DP Jr, Cavaleri JJ, Bowman RM (1995) Femtosecond investigation of electron trapping in semiconductor nanoclusters. J Phys Chem 99:7853–7856CrossRefGoogle Scholar
  119. Song Y, Zhang J, Yang H, Xu S, Jiang L, Dan Y (2014) Preparation and visible light-induced photo-catalytic activity of H-PVA/TiO2 composite loaded on glass via sol-gel method. Appl Surf Sci 292:978–985CrossRefGoogle Scholar
  120. Sriwong C, Wongnawa S, Patarapaiboolchai O (2008) Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability. Catal Commun 9:213–218CrossRefGoogle Scholar
  121. Stewart BD, Andrews LG, Pelletier BS, Daly CA, Boyd JE (2015) Porous PMMA-titania composites: a step towards more sustainable photocatalysis. J Water Process Eng 8:179–185CrossRefGoogle Scholar
  122. Subramanian E, Subbulakshmi S, Murugan C (2014) Inter-relationship between nanostructures of conducting polyaniline and the photocatalytic methylene blue dye degradation efficiencies of its hybrid composites with anatase TiO2. Mater Res Bull 51:128–135CrossRefGoogle Scholar
  123. Tennakone K, Kottegoda IRM (1996) Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films. J Photochem Photobiol A 93:79–81CrossRefGoogle Scholar
  124. Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A 87:177–179CrossRefGoogle Scholar
  125. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742CrossRefGoogle Scholar
  126. Thong CC, Teo DCL, Ng CK (2016) Application of polyvinyl alcohol (PVA) in cement-based composite materials: a review of its engineering properties and microstructure behavior. Constr Build Mater 107:172–180CrossRefGoogle Scholar
  127. Turton TJ, White JR (2001) Effect of stabilizer and pigment on photo-degradation depth profiles in polypropylene. Polym Degrad Stabil 74:559–568CrossRefGoogle Scholar
  128. Ullattil SG, Periyat P, Naufal B, Lazar MA (2016) Self-doped ZnO microrods: high temperature stable oxygen deficient platforms for solar photocatalysis. Ind Eng Chem Res 55:6413–6421CrossRefGoogle Scholar
  129. Vaez M, Moghaddam AZ, Mahmoodi NM, Alijani S (2012) Decolorization and degradation of acid dye with immobilized titania nanoparticles. Process Saf Environ Prot 90:56–64CrossRefGoogle Scholar
  130. Velásquez J, Valencia S, Rios L, Restrepo G, Marín J (2012) Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method. Chem Eng J 203:398–405CrossRefGoogle Scholar
  131. Vinu R, Madras G (2012) Environmental remediation by photocatalysis. J Indian Inst Sci 90:189–230Google Scholar
  132. Wang F, Min S, Han Y, Feng L (2010) Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattices Microstruct 48:170–180CrossRefGoogle Scholar
  133. Wang W, Huang G, Jimmy CY, Wong PK (2015) Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. J Environ Sci 34:232–247CrossRefGoogle Scholar
  134. Wang YZ, Zhong MQ, Chen F, Yang JT (2009) Visible light photocatalytic activity of TiO2/D-PVA for MO degradation. Appl Catal B Environ 90:249–254CrossRefGoogle Scholar
  135. Wegelin M, Hug S, Boller M, Gechter D, Vermeal S (2000) Back to the household—also in water treatment. EAWAG News, pp 11–12Google Scholar
  136. Yang H, Zhang J, Song Y, Xu S, Jiang L, Dan Y (2015) Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B. Appl Surf Sci 324:645–651CrossRefGoogle Scholar
  137. Yang JH, Han YS, Choy JH (2006). TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495:266–271Google Scholar
  138. You H, Zhao Y (2016) Synthesis, characterization and visible photocatalytic performance of iron (III) tetracarboxyphthalocyanine-sensitized TiO2 photocatalyst. J Phys Chem Biophys 5:199Google Scholar
  139. Yu C, Wu R, Fu Y, Dong X, Ma H (2012) Preparation of polyaniline supported TiO2 photocatalyst and its photocatalytic property. Adv Mater Res 356–360:524–528Google Scholar
  140. Zainal Z, Lee KH, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I (2005) Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. J Hazard Mater B 125:113–120CrossRefGoogle Scholar
  141. Zaleska A, Hupka J, Wiergowski M, Biziuk M (2000) Photocatalytic degradation of lindane, p, p’-DDT and methoxychlor in an aqueous environment. J Photochem Photobiol A Chem 135:213–220CrossRefGoogle Scholar
  142. Zhang J, Bi H, He G, Zhou Y (2014a) H. Chen., Fabrication of Ag3PO4-PANI-GO composites with high visible light photocatalytic performance and stability. J Environ Chem Eng 2:952–957CrossRefGoogle Scholar
  143. Zhang J, Song Y, Yang H, Xu S, Jiang L, Dan Y (2013) TiO2/T-PVA composites immobilized on cordierite: Structure and photocatalytic activity for degrading RhB under visible light. Water Air Soil Pollut 224:1555–1565CrossRefGoogle Scholar
  144. Zhang H, Zong R, Zhao J, Zhu Y (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42:3803–3807CrossRefGoogle Scholar
  145. Zhang Z, Wang W, Gao E (2014b) Polypyrrole/Bi2WO6 composite with high charge separation efficiency and enhanced photocatalytic activity. J Mater Sci 49:7325–7332CrossRefGoogle Scholar
  146. Zhang Z, Yates JT Jr (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551CrossRefGoogle Scholar
  147. Zhiyong Y, Keppner H, Laub D, Mielczarski E, Mielczarski J, Kiwi-Minsker L, Renken A, Kiwi J (2008a) Photocatalytic discoloration of methyl orange on innovative parylene-TiO2 flexible thin films under simulated sunlight. Appl Catal B Environ 79:63–71Google Scholar
  148. Zhiyong Y, Laub D, Bensimon M, Kiwi J (2008b) Flexible polymer TiO2 modified film photocatalysts active in the photodegradation of azo-dyes in solution. Inorg Chim Acta 361:589–594CrossRefGoogle Scholar
  149. Zhong W, Yu Y, Du C, Li W, Wang YZ, He G, Xie Y, He Q (2014) Characterization and high pollutant removal ability of buoyant (C, N)-TiO2/PTFE flakes prepared by high-energy ball-milling. RSC Adv 4:40019–40028CrossRefGoogle Scholar
  150. Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J, Zhang L (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B Environ 62:329–335CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chin Wei Lai
    • 1
  • Kian Mun Lee
    • 1
  • Joon Ching Juan
    • 1
    • 2
    Email author
  1. 1.Nanotechnology & Catalysis Research Centre (NANOCAT)Institute Postgraduates Studies, University of MalayaKuala LumpurMalaysia
  2. 2.School of ScienceMonash UniversitySubang JayaMalaysia

Personalised recommendations