Skip to main content

Role of Metal Nanoparticles and Its Surface Plasmon Activity on Nanocomposites for Visible Light-Induced Catalysis

  • Chapter
  • First Online:
Nanocomposites for Visible Light-induced Photocatalysis

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 2181 Accesses

Abstract

Heterogeneous photocatalysis has become an encouraging reaction technique to combat energy crisis and global environmental issues. Visible light (~400 nm–750 nm)-driven photocatalysis is the most imperative heterogeneous photocatalysis because of its selective product delivery, easy operation, and utilization of abundant available clean energy resource. In this context, utilization of clean, and available sunlight (having 44% visible light) could be a pleasant platform for solving energy and environmental problems. Thus visible light-driven photocatalysis is highly demanding, and so designing of such photocatalysts and their exploitation in catalysis under visible light has become a central research theme in catalysis. Surface plasmon resonance (SPR) active nanomaterials or composites are very effective to carry out catalytic redox reactions in presence of visible light due to the electron–hole formation, and termed as visible light plasmonic photocatalyst. Processes can be demonstrated through oxidation by “hole” and reduction by “hot electron”. Herein, we discussed on fabrication or synthesis of visible light plasmonic photocatalysts, and their application on catalytic reaction under visible light illumination. Visible light-induced SPR with detailed understanding of the fate of generated electron and hole on the redox reactions has been discussed. We have depicted various types of catalytic reactions such as photodegradation of large organic dyes (organic transformation), oxidation reaction, reduction reaction, hydroxylation, imine synthesis, water splitting reaction, biaryl synthesis, and CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  • Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, Weinheim

    Book  Google Scholar 

  • Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee M, Wiesner U, Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445

    Article  CAS  Google Scholar 

  • Brown AM, Sundararaman R, Narang P, Goddard WA III, Atwater HA (2016) Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10:957–966

    Article  CAS  Google Scholar 

  • Brus L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc Chem Res 41:1742–1749

    Article  CAS  Google Scholar 

  • Cao XB, Gu L, Zhuge LJ, Gao WJ, Wang WC, Wu SF (2006) Template-free preparation of hollow Sb2S3 microspheres as supports for Ag nanoparticles and photocatalytic properties of the constructed metal-semiconductor nanostructures. Adv Funct Mater 16:896–902

    Article  CAS  Google Scholar 

  • Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten R (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–2101

    Article  CAS  Google Scholar 

  • Chen CK, Chen HM, Chen C-J, Liu R-S (2013) Plasmon-enhanced near-infrared-active materials in photoelectrochemical water splitting. Chem Commun 49:7917–7919

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026

    Article  CAS  Google Scholar 

  • Cheng H, Fuku K, Kuwahara Y, Moriab K, Yamashita H (2015) Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 3:5244–5258

    Article  CAS  Google Scholar 

  • Chulkov EV, Borisov AG, Gauyacq JP, Sanchez-Portal D, Silkin VM, Zhukov VP, Echenique PM (2006) Electronic excitations in metals and at metal surfaces. Chem Rev 106:4160–4206

    Article  CAS  Google Scholar 

  • Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  • Cushing SK, Li JT, Meng F, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • Dhara S, Giri P (2011) On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. J Appl Phys 110:124317

    Article  CAS  Google Scholar 

  • Dutta S, Ray C, Sasmal AK, Negishi Y, Pal T (2016) Fabrication of dog-bone shaped Au NRcore-Pt/Pdshell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J Mater Chem A 4:3765–3776

    Article  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  • Feng S, Wang M, Zhou Y, Li P, Tu W, Zou Z (2015) Double-shelled plasmonic Ag–TiO2 hollow spheres toward visible light-active hotocatalytic conversion of CO2 into solar fuel. APL Mater 3:104416

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Gao H, Liu C, Jeong HE, Yang P (2012) Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6:234–240

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  • Gonzalez-Bejar M, Peters K, Hallett-Tapley GL, Grenier M, Scaiano JC (2013) Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem Commun 49:1732–1734

    Article  CAS  Google Scholar 

  • Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  • Hallett-Tapley GL, Silvero MJ, Gonzalez-Bejar M, Grenier M, Netto-Ferreira JC, Scaiano JC (2011) Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. J Phys Chem C 115:10784–10790

    Article  CAS  Google Scholar 

  • Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887

    Article  CAS  Google Scholar 

  • Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619

    Article  CAS  Google Scholar 

  • Hou WB, Hung WH, Pavaskar P, Goeppert A, Aykol M, Cronin SB (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1:929–936

    Article  CAS  Google Scholar 

  • Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072

    Article  CAS  Google Scholar 

  • Ide Y, Nakamura N, Hattori H, Ogino R, Ogawa M, Sadakane M, Sano T (2011) Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chem Commun 47:11531–11533

    Article  CAS  Google Scholar 

  • Inagaki T, Kagami K, Arakawa ET (1981) Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys Rev B 24:3644–3646

    Article  CAS  Google Scholar 

  • Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133:5202–5205

    Article  CAS  Google Scholar 

  • Jiang R, Li B, Fang C, Wang J (2014) Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 26:5274–5309

    Article  CAS  Google Scholar 

  • Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n–TiO2. Science 297:2243–2245

    Article  CAS  Google Scholar 

  • Klinkova A, Ahmed A, Choueiri RM, Guestb JR, Kumacheva E (2016) Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance. RSC Adv 6:47907–47911

    Article  CAS  Google Scholar 

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan L, Dasari RR, Feld MR (1997) Single molecule detection using surface-enhanced raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  • Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42:8467–8493

    Article  CAS  Google Scholar 

  • Kominami H, Tanaka A, Hashimoto K (2011) Gold nanoparticles supported on cerium(IV) oxide powder for mineralization of organic acids in aqueous suspensions under irradiation of visible light of λ = 530 nm. Appl Catal A 397:121–126

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  • Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    Article  CAS  Google Scholar 

  • Lantman EMV, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7:583–586

    Article  CAS  Google Scholar 

  • Larsson EM, Langhammer C, Zori I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094

    Article  CAS  Google Scholar 

  • Lerme J, Baida H, Bonnet C, Broyer M, Cottancin E, Crut A, Maioli P, Fatti ND, Vallee F, Pellarin M (2010) Size dependence of the surface plasmon resonance damping in metal nanospheres. J Phys Chem Lett 1:2922–2928

    Article  CAS  Google Scholar 

  • Li R, Chen W, Kobayashib H, Ma C (2010) Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem 12:212–215

    Article  CAS  Google Scholar 

  • Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  • Liu Q, Zhou Y, Kou JH, Chen XY, Tian ZP, Gao J, Yan SC, Zou ZG (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387

    Article  CAS  Google Scholar 

  • Lou Z, Wang Z, Huang B, Dai Y (2014) Synthesis and activity of plasmonic photocatalysts. ChemCatChem 6:2456–2476

    Article  CAS  Google Scholar 

  • Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440:295

    Article  CAS  Google Scholar 

  • Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Koel BE, Atwater HA (2001) Plasmonics-a route to nanoscale optical devices. Adv Mater 13:1501–1505

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445

    Article  Google Scholar 

  • Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tet Lett 20:3437–3440

    Article  Google Scholar 

  • Mondal C, Pal J, Ganguly M, Sinha AK, Jana J, Pal T (2014) A one pot synthesis of Au-ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New J Chem 38:2999–3005

    Article  CAS  Google Scholar 

  • Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–247

    Article  CAS  Google Scholar 

  • Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782

    Article  CAS  Google Scholar 

  • Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904

    Article  CAS  Google Scholar 

  • Naya S, Kimura K, Tada H (2013) One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catal 3:10–13

    Article  CAS  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  • Pal J, Sasmal AK, Ganguly M, Pal T (2015) Surface plasmon effect of cu and presence of n-p heterojunction in oxide nanocomposites for visible light photocatalysis. J Phys Chem C 119:3780–3790

    Article  CAS  Google Scholar 

  • Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20:9889–9892

    Article  CAS  Google Scholar 

  • Praharaj S, Nath S, Panigrahi S, Ghosh SK, Basu S, Pande S, Jana S, Pal T (2006) Layer-by-layer deposition of bimetallic nanoshells on functionalized polystyrene beads. Inorg Chem 45:1439–1441

    Article  CAS  Google Scholar 

  • Primo A, Corma A, Garcıa H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  CAS  Google Scholar 

  • Renger J, Quidant R, Hulst NV, Novotny L (2010) Surface-enhanced nonlinear four-wave mixing. Phys Rev Lett 104:046803

    Article  CAS  Google Scholar 

  • Roy A, Pal T (2015) Nucleophile‐induced shift of surface plasmon resonance and its implication in chemistry. Sur Modif Biopolymers (Thakur VK, Singha AS (eds), Willey)

    Google Scholar 

  • Sarina S, Waclawik ER, Zhu H (2013a) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15:1814–1833

    Article  CAS  Google Scholar 

  • Sarina S, Zhu HY, Jaatinen E, Xiao Q, Liu HW, Jia JF, Chen C, Zhao J (2013b) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801

    Article  CAS  Google Scholar 

  • Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  • Shahzad A, Kim W-S, Yu T (2016) A facile synthesis of Ag/AgCl hybrid nanostructures with tunable morphologies and compositions as advanced visible light plasmonic photocatalysts. Dalton Trans 45:9158–9165

    Article  CAS  Google Scholar 

  • Sharma K, Kumar M, Bhalla V (2015) Aggregates of the pentacenequinone derivative as reactors for the preparation of Ag@Cu2O core—shell NPs: an active photocatalyst for Suzuki and Suzuki type coupling reactions. Chem Commun 51:12529–12532

    Article  CAS  Google Scholar 

  • Sinha AK, Jana S, Pande S, Sarkar S, Pradhan M, Basu M, Saha S, Pal A, Pal T (2009) New hydrothermal process for hierarchical TiO2 nanostructures. CrystEngComm 11:1210–1212

    Article  CAS  Google Scholar 

  • Sinha AK, Basu M, Pradhan M, Sarkar S, Pal T (2010) Fabrication of large-scale hierarchical ZnO hollow spheroids for hydrophobicity and photocatalysis. Chem Eur J 16:7865–7874

    Article  CAS  Google Scholar 

  • Skrabalak SE, Chen JY, Sun YG, Lu XM, Au L, Cobley CM, Xia YN (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    Article  CAS  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  • Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol, A 163:37–44

    Article  CAS  Google Scholar 

  • Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chem Commun 49:2551–2553

    Article  CAS  Google Scholar 

  • Tang JW, Zou ZG, Ye JH (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43: 4463–4466

    Google Scholar 

  • Torimoto T, Horibe H, Kameyama T, Okazaki K, Ikeda S, Matsumura M, Ishikawa A, Ishihara H (2011) Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J Phys Chem Lett 2:2057–2062

    Article  CAS  Google Scholar 

  • Trinh TT, Sato R, Sakamoto M, Fujiyoshi Y, Haruta M, Kurata H, Teranishi T (2015) Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction. Nanoscale 7:12435–12444

    Article  CAS  Google Scholar 

  • Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315

    Article  CAS  Google Scholar 

  • Wang C, Astruc D (2014) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216

    Article  CAS  Google Scholar 

  • Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53–62

    Article  CAS  Google Scholar 

  • Wang P, Huang B, Daia Y, Whangbo M-H (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825

    Article  CAS  Google Scholar 

  • Wang P, Tang Y, Dong Z, Chenc Z, Lim T-T (2013a) Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J Mater Chem A 1:4718–4727

    Article  CAS  Google Scholar 

  • Wang F, Li CH, Chen HJ, Jiang RN, Sun LD, Li Q, Wang JF, Yu JC, Yan CH (2013b) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135:5588–5601

    Article  CAS  Google Scholar 

  • Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5:5133–5146

    Article  CAS  Google Scholar 

  • Watanabe K, Menzel D, Nilius N, Freund H-J (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320

    Article  CAS  Google Scholar 

  • Xiao M, Jiang R, Wang F, Fang C, Wang J, Yu JC (2013) Plasmon-enhanced chemical reactions. J Mater Chem A 1:5790–5805

    Article  CAS  Google Scholar 

  • Xue J, Ma S, Zhou Y, Zewu Z, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7:9630–9637

    Article  CAS  Google Scholar 

  • Yamada K, Miyajima K, Mafun F (2007) Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband. J Phys Chem C 111:11246–11251

    Article  CAS  Google Scholar 

  • Yu JG, Tao HZ, Cheng B (2010) In situ monitoring of heterogeneous catalytic reactions. ChemPhysChem 11:1617–1618

    Article  CAS  Google Scholar 

  • Zeng C, Hu Y, Guo Y, Zhang T, Dong F, Zhang Y, Huang H (2016) Facile in situ self-sacrifice approach to ternary hierarchical architecture Ag/AgX (X = Cl, Br, I)/AgIO3 distinctively promoting visible-light photocatalysis with composition-dependent mechanism. ACS Sustainable Chem Eng 4:3305–3315

    Article  CAS  Google Scholar 

  • Zhang Q, Lima DQ, Lee I, Zaera F, Chi M, Yin Y (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed 50:7088–7092

    Article  CAS  Google Scholar 

  • Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401

    Article  CAS  Google Scholar 

  • Zhao J, Pinchuk AO, McMahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710–1720

    Article  CAS  Google Scholar 

  • Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan CH (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50:11994

    Article  CAS  Google Scholar 

  • Zhou X, Liu G, Yu J, Fan W (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22:21337–21354

    Article  CAS  Google Scholar 

  • Zhu H, Chen X, Zheng Z, Ke X, Jaatinen E, Zhao J, Guo C, Xied T, Wang D (2009) Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Commun 7524–7526

    Google Scholar 

  • Zhu H, Ke X, Yang X, Sarina S, Liu H (2010) Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew Chem Int Ed 49:9657–9661

    Article  CAS  Google Scholar 

  • Zhu SY, Liang SJ, Gu Q, Xie LY, Wang JX, Ding ZX, Liu P (2012) Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity. Appl Catal B 119:146–155

    Article  CAS  Google Scholar 

  • Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarasankar Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sasmal, A.K., Pal, T. (2017). Role of Metal Nanoparticles and Its Surface Plasmon Activity on Nanocomposites for Visible Light-Induced Catalysis. In: Khan, M., Pradhan, D., Sohn, Y. (eds) Nanocomposites for Visible Light-induced Photocatalysis. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-62446-4_4

Download citation

Publish with us

Policies and ethics