Skip to main content

Lithogenesis

  • Chapter
  • First Online:
Urolithiasis in Clinical Practice

Part of the book series: In Clinical Practice ((ICP))

  • 851 Accesses

Abstract

The physiopathological mechanism of stone formation is a very complex, progressive, and incompletely understood process which includes precipitation, nucleation, crystal growth, aggregation, and concretion of various modulators in urine (Fig. 5.1) [1].

“If you can’t explain it simply, you don’t understand it well enough”

Albert Einstein (1879–1955) (Nobel Prize in Physics in 1921, Time Person of the Century in 1999)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013;2013:292953.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Daudon M, Frochot V. Crystalluria. Clin Chem Lab Med. 2015;53(Suppl 2):s1479–87.

    CAS  PubMed  Google Scholar 

  3. Fleisch H. Inhibitors and promoters of stone formation. Kidney Int. 1978;13(5):361–71.

    Article  CAS  PubMed  Google Scholar 

  4. Robertson WG. Pathophysiology of stone formation. Urol Int. 1986;41(5):329–33.

    Article  CAS  PubMed  Google Scholar 

  5. Wesson JA, Johnson RJ, Mazzali M, et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol. 2003;14(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Liu K, Pan Y, et al. Roles of osteopontin gene polymorphism (rs1126616), osteopontin levels in urine and serum, and the risk of urolithiasis: a meta-analysis. Biomed Res Int. 2015;2015:315043.

    PubMed  PubMed Central  Google Scholar 

  7. Atmani F, Mizon J, Khan SR. Inter-alpha-inhibitor: a protein family involved in the inhibition of calcium oxalate crystallization. Scanning Microsc. 1996;10(2):425–33; discussion 433–4.

    CAS  PubMed  Google Scholar 

  8. Ryall RL, Harnett RM, Marshall VR. The effect of urine pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta. 1981;112:349–56.

    Article  CAS  PubMed  Google Scholar 

  9. Fleisch H. Mechanisms of stone formation: role of promoters and inhibitors. Scand J Urol Nephrol Suppl. 1980;53:53–66.

    CAS  PubMed  Google Scholar 

  10. Lieske JC, Rule AD, Krambeck AE. Stone composition as a function of age and sex. Clin J Am Soc Nephrol. 2014;9(12):2141–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alkhunaizi AM. Urinary stones in Eastern Saudi Arabia. Urol Ann. 2016;8(1):6–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukuhara H, Ichiyahagi O, Kakizaki H, et al. Clinical relevance of seasonal changes in the prevalence of ureterolithiasis in the diagnosis of renal colic. Urolithiasis. 2016;44(6):529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105(6):1009–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evan AP, Lingeman JE, Coe FL, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111(5):607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stoller ML, Low RK, Shami GS, et al. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol. 1996;156(4):1263–6.

    Article  CAS  PubMed  Google Scholar 

  16. Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol. 1978;15(6):442–8.

    CAS  PubMed  Google Scholar 

  17. Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 1994;46(3):847–54.

    Article  CAS  PubMed  Google Scholar 

  18. Gambaro G, Trinchieri A. Recent advances in managing and understanding nephrolithiasis/nephrocalcinosis. F1000Res. 2016;5. pii: F1000 Faculty Rev-695.

    Google Scholar 

  19. Evan AP, Worcester EM, Coe FL, et al. Mechanisms of human kidney stone formation. Urolithiasis. 2015;43(Suppl 1):19–32.

    Article  PubMed  Google Scholar 

  20. Khan SR, Canales BK. Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis. 2015;43(Suppl 1):109–23.

    Article  CAS  PubMed  Google Scholar 

  21. Hsi RS, Ramaswamy K, Ho SP, Stoller ML. The origins of urinary stone disease: upstream mineral formations initiate downstream Randall’s plaque. BJU Int. 2017;119(1):177–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Al-Mamari, S.A. (2017). Lithogenesis. In: Urolithiasis in Clinical Practice. In Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-62437-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62437-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62436-5

  • Online ISBN: 978-3-319-62437-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics