Skip to main content

Properties of Definite Bethe–Salpeter Eigenvalue Problems

  • Conference paper
  • First Online:
Book cover Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing (EPASA 2015)

Abstract

The Bethe–Salpeter eigenvalue problem is solved in condense matter physics to estimate the absorption spectrum of solids. It is a structured eigenvalue problem. Its special structure appears in other approaches for studying electron excitation in molecules or solids also. When the Bethe–Salpeter Hamiltonian matrix is definite, the corresponding eigenvalue problem can be reduced to a symmetric eigenvalue problem. However, its special structure leads to a number of interesting spectral properties. We describe these properties that are crucial for developing efficient and reliable numerical algorithms for solving this class of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A vector \(v\) is called \(C\)-positive, \(C\)-negative, \(C\)-neutral, respectively, if \(v^{{\ast}}C_{n}v> 0\), \(v^{{\ast}}C_{n}v <0\), \(v^{{\ast}}C_{n}v = 0\). An eigenvalue of \(\varOmega -\lambda C_{n}\) is called \(C\)-positive (\(C\)-negative) if its associated eigenvector is \(C\)-positive (\(C\)-negative).

  2. 2.

    In the case when \(\phi (X,Y )^{{\ast}}\varOmega H\phi (X,Y )\) is singular, we assign half of the zero eigenvalues with the positive sign in the notation \(\lambda _{i}^{+}\big(\phi (X,Y )^{{\ast}}\varOmega H\phi (X,Y )\big)\).

References

  1. Bai, Z., Li, R.C.: Minimization principles for the linear response eigenvalue problem I: theory. SIAM J. Matrix Anal. Appl. 33(4), 1075–1100 (2012). doi:10.1137/110838960

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z., Li, R.C.: Minimization principles for the linear response eigenvalue problem II: computation. SIAM J. Matrix Anal. Appl. 34(2), 392–416 (2013). doi:10.1137/110838972

    Article  MathSciNet  MATH  Google Scholar 

  3. Benner, P., Fassbender, H., Yang, C.: Some remarks on the complex J-symmetric eigenproblem. Preprint MPIMD/15–12, Max Planck Institute Magdeburg. Available from http://www.mpi-magdeburg.mpg.de/preprints/ (2015)

  4. Bhatia, R., Kittaneh, F.: Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra Appl. 308, 203–211 (2000). doi:10.1016/S0024-3795(00)00048-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Dancoff, S.M.: Non-adiabatic meson theory of nuclear forces. Phys. Rev. 78(4), 382–385 (1950). doi:10.1103/PhysRev.78.382

    Article  MATH  Google Scholar 

  6. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices. J. Comput. Phys. 17(1), 87–94 (1975). doi:10.1016/0021-9991(75)90065-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Gohberg, I., Lancaster, P., Rodman, L.: Matrices and Indefinite Scalar Products. Operator Theory: Advances and Applications, vol. 8. Birkhäuser, Basel (1983)

    Google Scholar 

  8. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001). doi:10.1137/S1064827500366124

    Article  MathSciNet  MATH  Google Scholar 

  9. Kressner, D., Miloloža Pandur, M., Shao, M.: An indefinite variant of LOBPCG for definite matrix pencils. Numer. Algorithms 66(4), 681–703 (2014). doi:10.1007/s11075-013-9754-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Liang, X., Li, R.C.: Extensions for Wielandt’s min–max principles for positive semi-definite pencils. Linear Multilinear Algebra 62(8), 1032–1048 (2014). doi:10.1080/03081087.2013.803242

    Article  MathSciNet  MATH  Google Scholar 

  11. Mathias, R.: Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM J. Matrix Anal. Appl. 19(2), 541–550 (1998). doi:10.1137/S0895479896310536

    Article  MathSciNet  MATH  Google Scholar 

  12. Nakatsukasa, Y.: Perturbation behavior of a multiple eigenvalue in generalized Hermitian eigenvalue problems. BIT Numer. Math. 50, 109–121 (2010). doi:10.1007/s10543-010-0254-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Nakatsukasa, Y.: Eigenvalue perturbation bounds for Hermitian block tridiagonal matrices. Appl. Numer. Math. 62, 67–78 (2012). doi:10.1016/j.apnum.2011.09.010

    Article  MathSciNet  MATH  Google Scholar 

  14. Parlett, B.N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics, vol. 20. SIAM, Philadelphia, PA (1998). Corrected reprint of the 1980 original

    Google Scholar 

  15. Salpeter, E.E., Bethe, H.A.: A relativistic equation for bounded-state problems. Phys. Rev. 84(6), 1232–1242 (1951). doi:10.1103/PhysRev.84.1232

    Article  MATH  Google Scholar 

  16. Shao, M., H. da Jornada, F., Yang, C., Deslippe, J., Louie, S.G.: Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem. Linear Algebra Appl. 488, 148–167 (2016). doi:10.1016/j.laa.2015.09.036

  17. Stewart, G.W., Sun, J.: Matrix Perturbation Theory. Academic, Boston, MA (1990)

    MATH  Google Scholar 

  18. Tamm, I.Y.: Relativistic interaction of elementary particles. J. Phys. (USSR) 9, 449–460 (1945)

    Google Scholar 

  19. Thouless, D.J.: Vibrational states of nuclei in the random phase approximation. Nucl. Phys. 22, 78–95 (1961). doi:10.1016/0029-5582(61)90364-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Veselić, K.: Damped Oscillations of Linear Systems—A Mathematical Introduction. Lecture Notes in Mathematics, vol. 2023. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Acknowledgements

The authors thank Ren-Cang Li for helpful discussions. Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shao, M., Yang, C. (2017). Properties of Definite Bethe–Salpeter Eigenvalue Problems. In: Sakurai, T., Zhang, SL., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T. (eds) Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing. EPASA 2015. Lecture Notes in Computational Science and Engineering, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-62426-6_7

Download citation

Publish with us

Policies and ethics