Advertisement

Trends in Gravitational Search Algorithm

  • P. B. de Moura Oliveira
  • Josenalde Oliveira
  • José Boaventura Cunha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 620)

Abstract

The gravitational search algorithm (GSA) is reviewed, by presenting a tutorial analysis of its key issues. As any other metaheuristic, GSA requires the selection of some heuristic parameters. One parameter which is crucial in regulating the exploratory capabilities of this algorithm is the gravitational constant. An analysis regarding this parameter selection is presented and a heuristic rule proposed for this purpose. The GSA performance is compared both with a hybridization with particle swarm optimization (PSO) and standard PSO. Preliminary simulation results are presented considering simple continuous functions optimization examples.

Keywords

Gravitational search algorithm Particle Swarm Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Rashedi E., Nezamabadi-pour H., and Saryazdi S.: GSA: A Gravitational Search Algorithm. Information Sciences, 179: 2232–2248, (2009).Google Scholar
  2. 2. Precup R.-E., David R.-C., Petriu E., Preitl S. and Rădac M.-B.: Gravitational Search Algorithms in Fuzzy Control Systems Tuning. Preprints of the 18th IFAC World Congress, pp. 13624–13629, (2011).Google Scholar
  3. 3. Rashedi E. and Nezamabadi-pour H.: A stochastic gravitational approach to feature based color image segmentation. Eng. Applic. of Artificial Intelligence. 26: 1322–1332, (2013).Google Scholar
  4. 4. Chen Z., Xiaohui Y., Tian H. and Ji B.: Improved gravitational search algorithm for parameter identification of water turbine regulation system. Energy Conversion and Management 78: 306–315, (2014).Google Scholar
  5. 5. Xiang J., Han X. H., Duan F., Qiang Y., Xiong X. Y., Lan Y. and Chai H.: A novel hybrid system for feature selection based on an improved gravitational search algorithm and k-NN method. Applied Soft Computing 31: 293–307, (2015).Google Scholar
  6. 6. Oliveira P. B. M., Pires E. S. and Novais P.: Design of Posicast PID control systems using a gravitational search algorithm. Neurocomputing 167:18–23, (2015).Google Scholar
  7. 7. Sarjila R., Ravi K., Edward J., Kumar K. and Prasad A.: Parameter Extraction of Solar Photovoltaic Modules Using Gravitational Search Algorithm. Journal of Electrical and Computer Engineering Volume (2016), Article ID 2143572, 6 pages http://dx.doi.org/10.1155/2016/2143572.
  8. 8. Ghavidel S., Aghaei J., Muttaqi K. and Heidari A.: Renewable energy management in a remote area using modified gravitational search algorithm. Energy 97: 391–399, (2016).Google Scholar
  9. 9. Mirjalili S. and Hashim S.: A New Hybrid PSOGSA Algorithm for Function Optimization. Proc. of the Int. Conf. on Computer and Information Application, pp. 374–377, (2010).Google Scholar
  10. 10. Mirjalili S., Hashim S. and Sardroudi S.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation 218:11125–11137, (2012).Google Scholar
  11. 11. Jianga S., Wanga Y. and Jiaa Z.: Convergence analysis and performance of an improved gravitational search algorithm. Applied Soft Computing 24:363–384, (2014).Google Scholar
  12. 12. Das P., Behera H. and Panigrahi B.:A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm and Evolutionary Computation 28:14–28, (2016).Google Scholar
  13. 13. Sun G., Zhang A., Wang Z., Yao Y. and Ma J.: Locally informed gravitational search algorithm. Knowledge-Based Systems 104:134–144, (2016).Google Scholar
  14. 14. Suna G., Zhanga A., Yao Y. and Wang Z.: A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding. Applied Soft Computing 46:703–730, (2016).Google Scholar
  15. 15. Gauci M., Dodd T. J. and Groß R: Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity. Natural Computing, 11:719–720, (2012).Google Scholar
  16. 16. Darzi S., Tiong S., Islam M., Soleymanpour H. and Kibria S.: An experience oriented-convergence improved gravitational search algorithm for minimum variance distortion less response beamforming optimum. PLoSONE11,doi: 10.1371/journal.pone.0156749, (2016).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • P. B. de Moura Oliveira
    • 1
  • Josenalde Oliveira
    • 1
    • 2
  • José Boaventura Cunha
    • 1
  1. 1.Department of Engineering, School of Sciences and TechnologyINESC TEC – INESC Technology and ScienceVila RealPortugal
  2. 2.Agricultural School of Jundiaí- Federal University of Rio Grande do Norte, UFRNMacaíbaBrasil

Personalised recommendations