Skip to main content

Control of Accuracy of Forming Elastic-Deformable Shafts with Low Rigidity

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 14th International Conference (DCAI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 620))

Abstract

The paper presents the problem of control of the accuracy of forming elastic-deformable shafts with low rigidity and namely the control of the elasticdeformable state of semi-finished product with low rigidity through the effect of additional force factors under conditions of lateral bending, permitting the achievement of uniform stiffness of the shaft at the point of application of machining force, and consequently a significant increase of the accuracy of shaft formation in the course of machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Świć, A., Wołos, D., Litak, G.: Method of control of machining accuracy of low-rigidity elasticdeformable shafts. Latin American Journal of Solids and Structures. 11(2), 260–278 (2014)

    Google Scholar 

  • 2. Swic, A., Taranenko. W.: Adaptive control of machining accuracy of axial-symmetrical lowrigidity parts in elastic-deformable state. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 14 (3), 215–221 (2012)

    Google Scholar 

  • 3. Tlusty, J.: Manufacturing processes and equipment. Upper Sadde River, NJ: Prentice Hall, 2000.

    Google Scholar 

  • 4. Bajić, D., Celent, L., Jozić, S.: Modeling of the influence of cutting parameters on the surface roughness, tool wear and cutting force in face milling in off-line process control. Stroj Vestn-J Mech E. 58, 673–682 (2012)

    Google Scholar 

  • 5. Urbicain, G., Olvera, D., Fernández, A., Rodríguez, A., Tabernero, I., López de Lacalle, L.N.: Stability Lobes in Turning of Low Rigidity Components. Advanced Materials Research. 498, 231–236 (2012)

    Google Scholar 

  • 6. Świć, A., Draczew, A., Gola A.: Method of achieving accuracy of thermo-mechanical treatment of low-rigidity shafts. Advances in Science and Technology-Research Journal, 10 (29), 62–70 (2016)

    Google Scholar 

  • 7. Campa, F. J., de Lacalle, L.N.L., Urbikain, G., Ruiz, D.: Definition of cutting conditions for thin-to-thin milling of aerospace low rigidity parts. Proceedings of the ASME International Manufacturing Science and Engineering Conference 2008. 1, 359–368 (2008)

    Google Scholar 

  • 8. Ryu, S. H., Lee, H. S., Chu, C. N.: The form error prediction in side wall machining considering tool deflection. Int. J Mach Tools Manuf. 43, 731–737 (2003)

    Google Scholar 

  • 9. Ratchev, S., Liu, S., Huang, W. Becker, A.A.: Milling error prediction and compensation in machining of low-rigidity parts. Int J Mach Tools Manuf. 44 (15), 1629–1641 (2004)

    Google Scholar 

  • 10. Tian, L.Z., Wu J.H., Xiong Z.H., Ding H.: Active chatter suppression in turning of low-rigidity workpiece by system matching. Lect Notes in Art Intel. 9245, 609–618 (2015)

    Google Scholar 

  • 11. Qi, H., Tian, Y., Zhang, D.: Machining forces prediction for peripheral milling of low-rigidity component with curved geometry. Int J Adv Manuf Technol. 64, 1599–1610 (2013)

    Google Scholar 

  • 12. Campomanes, M. L., Altintas, Y.: An improved time domain simulation for dynamic milling at small radial immersions. Trans ASME, J Manuf Sci Eng. 125, 416–422 (2003)

    Google Scholar 

  • 13. Li, H., Shin, Y.C.: A comprehensive dynamic and milling simulation model. Trans ASME, J Manuf Sci Eng.128, 86–95 (2006)

    Google Scholar 

  • 14. Lorong, P., Coffignal, G., Cohen-Assouline, S.: Simulation du comportement dynamique d’un systeme usinant: modelisation de l’interaction outil/matiere en presence d’une piece flexible. Mec Ind. 9, 117–124 (2008)

    Google Scholar 

  • 15. Altintas, Y: Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press (2000)

    Google Scholar 

  • 16. Chen C.K., Tsao Y.M.: A stability analysis of regenerative chatter in turning process without using tailstock. Int J Adv Manuf Technol. 29, 648–654 (2006)

    Google Scholar 

  • 17. Hassui, A., Diniz, A.E.: Correlating surface roughness and vibration on plunge cylindrical grinding of steel. Int J Mach Tools Manufac. 43, 855–862 (2003)

    Google Scholar 

  • 18. Świć, A., Wołos, D., Zubrzycki, J., Opielak, M., Gola, A., Taranenko, V.: Accuracy Control in the Machining of Low Rigidity Shafts. Applied Mechanics and Materials. 613, 357–367 (2014)

    Google Scholar 

  • 19. Litak, G., Rusinek, R., Teter, A.: Nonlinear analysis of experimental time series of a straight turning process. Meccanica. 39, 105–112 (2004)

    Google Scholar 

  • 20. Świć, A., Gola, A., Wołos, D., Opielak, M.: Micro-geometry Surface Modelling in the Process of Low-Rigidity Elastic-Deformable Shafts Turning. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 1–9 (2016)

    Google Scholar 

  • 21. Cardi, A.A., Firpi, H.A., Bement, M.T., Liang, S.Y.: Workpiece dynamic analysis and prediction during chatter of turning process. Mech Syst Signal Pr. 22, 1481–1494 (2008)

    Google Scholar 

  • 22. Qiang, L.Z.: Finite difference calculations of the deformations of multi-diameter workpieces during turning. J Mat Process Technol. 98, 310–316 (2000)

    Google Scholar 

  • 23. Jianliang, G, Rongdi, H.: A united model of diametral error in slender bar turning with a follower rest. Int J Mach Tools Manufac. 46, 1002–1012 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Gola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Świć, A., Gola, A. (2018). Control of Accuracy of Forming Elastic-Deformable Shafts with Low Rigidity. In: Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J. (eds) Distributed Computing and Artificial Intelligence, 14th International Conference. DCAI 2017. Advances in Intelligent Systems and Computing, vol 620. Springer, Cham. https://doi.org/10.1007/978-3-319-62410-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62410-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62409-9

  • Online ISBN: 978-3-319-62410-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics