Automated Web-Based Geoprocessing of Rental Prices

  • Harald Schernthanner
  • Sebastian Steppan
  • Christian Kuntzsch
  • Erik Borg
  • Hartmut Asche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10407)


Increasingly, geodata processing is being relocated to web-based services. A pioneering role was played here by the Open Geospatial Consortium(OGC) and the standardized OGC Web Processing Services (WPS). In addition to WPS, a large number of non-standardized online services and libraries, developed in the recent years, allow the web-based processing of spatial data. As geodata processing moved to web-based services, it led to an exponential increase in the availability of data with a spatial component on the World Wide Web.

Several web-based services possess the capabilities to geoprocess real estate data as rental prices. The aim of this article is to explore semi-or fully-automatedweb-based realtime geodata processing of rental data. A fully functional implementation of a nearly real-time-generated rental mapis presented. Till now, no comparable service exists.


Geoprocessing Automatation Rental prices Housing 


  1. 1.
    Batty, M., Crooks, A., Hudson-Smith, A., Milton, R., Anand, S., Jackson, M., Morley, J.: Data Mash-ups and the Future of Mapping. JISC, Bristol (2010)Google Scholar
  2. 2.
    Carto: Predict through location (2017). Accessed 13 Mar 2017
  3. 3.
    ESRI: ArcGIS Online, Mapping without limits (2017). Accessed 13 Mar 2017
  4. 4.
  5. 5.
    Fajfr, J.: FlatPricer (2017). Accessed 13 Mar 2017
  6. 6.
    GDAL: GDAL - Geospatial Data Abstraction Library (2017). Accessed 13 Mar 2017
  7. 7.
    Hofer, B.: Uses of online geoprocessing technology in analyses and case studies: a systematic analysis of literature. Int. J. Digit. Earth 8(11), 901–917 (2015)CrossRefGoogle Scholar
  8. 8.
    Manganelli, B., Pontrandolfi, P., Azzato, A., Murgante, B.: Using geographically weighted regression for housing market segmentation. Int. J. Bus. Intell. Data Min. 13 9(2), 161–177 (2014)CrossRefGoogle Scholar
  9. 9.
    Meier, J.D.: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) (2010). Accessed 13 Mar 2017
  10. 10.
    MapBox: Maps that move you (2017). Accessed 13 Mar 2017
  11. 11.
    Nestoria: Home - Nestoria API - Methods - Search Listing (2017). Accessed 13 Mar 2017
  12. 12.
    Peterson, M.P.: Mapping in the Cloud. Guilford Publications, New York (2014)Google Scholar
  13. 13.
    R Studio: Download RStudio Server v1.0.136 (2017). Accessed 13 Mar 2017
  14. 14.
    R Studio: Shiny by RStudio. A web application framework for R (2017). Accessed 13 Mar 2017
  15. 15.
    Scharl, A., Tochtermann, K. (eds.): The Geospatial Web: How Geobrowsers, Social Software and the Web 2.0 are Shaping the Network Society. Springer, London (2009)Google Scholar
  16. 16.
    Schernthanner, H., Asche, H., Gonschorek, J., Scheele, L.: Spatial modeling and geovisualization of rental prices for real estate portals. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, Bernady O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 120–133. Springer, Cham (2016). doi: 10.1007/978-3-319-42111-7_11 CrossRefGoogle Scholar
  17. 17.
    Stollberg, B., Zipf, A.: Geoprocessing services for spatial decision support in the domain of housing market analyses. In: Proceedings AGILE (2008)Google Scholar
  18. 18.
    Stroisch, J.: Immobilien Bewerten Leicht Gemacht. Haufe-Lexware, Munich (2010)Google Scholar
  19. 19.
    Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(sup1), 234–240 (1970)CrossRefGoogle Scholar
  20. 20.
    Trulia: US home prices and hear map (2017). Accessed 11 May 2017
  21. 21.
    Turf: Advanced geospatial analysis for browsers and node (2017). Accessed 13 Mar 2017
  22. 22.
    Zillow: Real estate and mortgage data for your site (2017). Accessed 13 Mar 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Harald Schernthanner
    • 1
  • Sebastian Steppan
    • 3
  • Christian Kuntzsch
    • 2
  • Erik Borg
    • 4
  • Hartmut Asche
    • 2
  1. 1.Institute of Earth and Enviromental Science, University of PotsdamPotsdamGermany
  2. 2.Department of GeographyUniversity of PotsdamPotsdamGermany
  3. 3.Hochschule Mainz - University of Applied Sciences, School of Technology – Geoinformatics and SurveyingMainzGermany
  4. 4.German Aerospace Center (DLR), German Remote Sensing Data Center National Ground SegmentNeustrelitzGermany

Personalised recommendations