Skip to main content

High Temperature Fire Experiment for TET-1 and Landsat 8 in Test Site DEMMIN (Germany)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10407))

Abstract

In 2012, the German Aerospace Center (DLR) launched the small satellite TET-1 (Experimental Technology Carrier) as a test platform for new satellite technologies and as a carrier for the Multi-Spectral Camera System (MSC) with five spectral bands (Green, Red, Near Infrared, Middle Infrared, and Thermal Infrared). The MSC has been designed to provide quantitative parameters (e.g. fire radiative power, burned area) observing high-temperature events. The detection of such events provides information for operational support to fire brigades, to change detection of hotspots, to assess CO2 emissions of burning vegetation, and, finally, contributes to the monitoring programs that support climate models. In order to investigate the sensitivity and accuracy of the MSC system, a calibration and validation fire campaign was developed and executed, to derive characteristic signal changes of corresponding pixels in the MWIR and LWIR bands. The planning and execution of the validation campaign and the results are presented.

G. Kerr—Since November 1, 2016 – Ascending Technologies, Intel Deutschland, 82152 Krailling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Use: near infrared NIR (0.75–1 µm), short wave infrared SWIR (1–2.7 µm), middle infrared MWIR (3–5 µm), long wave infrared LWIR (8–14 µm).

  2. 2.

    DEMMIN – Durable Environmental Multidisciplinary Monitoring Information Network is a registered trade mark of DLR.

  3. 3.

    Demmin is a town in Mecklenburg–Western Pomerania.

  4. 4.

    Real ground resolution of TET-1 is 325 × 325 m². Staggered detector assembly and double sampling along track allows a computed ground resolution of 162 × 162 m². The method is described in Skrbek and Lorenz [30].

  5. 5.

    PSF – point spread function describes the response of an imaging system to a point source or point object.

References

  1. Wloczyk, C., Richter, R., Borg, E., Neubert, W.: Sea and lake surface temperature retrieval from Landsat thermal data in Northern Germany. Int. J. Remote Sens. 27, 2489–2502 (2006)

    Article  Google Scholar 

  2. Van, T.T., Trungand, L.V., Lan, H.L.: Application of thermal remote sensing in study on surface temperature distribution of Ho Chi Minh City. In: 7th FIG Regional Conference Spatial Data Serving People: Land Governance and the Environment – Building the Capacity, Hanoi, Vietnam, 19–22 October 2009

    Google Scholar 

  3. Weng, Q.: Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogrammetry Remote Sens. 64, 335–344 (2009)

    Article  Google Scholar 

  4. Wloczyk, C., Borg, E., Richter, R., Miegel, K.: Estimation of instantaneous air temperature above vegetation and soil surfaces from Landsat 7 ETM+ data in northern Germany. Int. J. Remote Sens. 32, 9119–9136 (2011)

    Article  Google Scholar 

  5. Schnebele, E., Tanyu, B.F., Cervone, B.F., Waters, N.: Review of remote sensing methodologies for pavement management and assessment. Eur. Transp. Res. Rev. 7, 1–19 (2015)

    Article  Google Scholar 

  6. Ishimwe, R., Abutaleb, K., Ahmed, F.: Applications of thermal imaging in agriculture—a review. Adv. Remote Sens. 3, 128–140 (2014)

    Article  Google Scholar 

  7. Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86, 370–384 (2002)

    Article  Google Scholar 

  8. Rosema, A., van Genderen, J.L., Veld, H., Vekerdy, Z., Ten Katen, A.M., Prakash, A.: Manual of coal fire detection and monitoring; report of the project: development and implementation of a coal fire monitoring and fighting system in China. Institute of Applied Geoscience (NITG), Delft, The Netherlands (1999)

    Google Scholar 

  9. Ramsey, M.S., Harris, A.J.L.: Volcanology 2020: how will thermal remote sensing of volcanic surface activity evolve over the next decade? J. Volcanol. Geoth. Res. 249, 217–233 (2013)

    Article  Google Scholar 

  10. Wooster, M.J., Zhukov, B., Oertel, D.: Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 86, 83–107 (2003)

    Article  Google Scholar 

  11. Gude, P., Jones, K., Rasker, R., Greenwood, M.C.: Evidence for the effect of homes on wildfire suppression costs. Int. J. Wildland Fire 22, 537–548 (2013)

    Article  Google Scholar 

  12. Leblon, B., Bourgeau-Chavez, L., San-Miguel-Ayanz, J.: Use of remote sensing in wildfire management. In: Curkovic, S. (ed.) Sustainable Development - Authoritative and Leading Edge Content for Environmental Management, Rijeka, Croatia, pp. 55–82 (2012)

    Google Scholar 

  13. Rábade, J.M., Aragoneses, C.: Social impact of large-scale forest fires. In: Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View. General Technical report PSW-GTR-208, Station, pp. 23–33 (2008)

    Google Scholar 

  14. Zhukov, B., Lorenz, E., Oertel, D., Wooster, M., Roberts, G.: Experience of detection and quantitative characterization of fires during the experimental small satellite mission BIRD. DLR-Forschungsbericht 2005-04 (2005)

    Google Scholar 

  15. Idso, S.B., Schmugge, T.J., Jackson, R.D., Reginato, R.J.: The utility of surface temperature measurements for the remote sensing of surface soil water status. J. Geophys. Res. 80, 3044–3049 (1975)

    Article  Google Scholar 

  16. Quattroch, D., Luvall, C.: Thermal Remote Sensing in Land surface Processes. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  17. Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J., Hook, S., Kahle, A.: A temperature and emissivity separation algorithm for advanced spaceborne thermals emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998)

    Article  Google Scholar 

  18. Zhang, J., Kuenzer, C., Tetzlaff, A., Oertel, D., Zhukov, B., Wagner, W.: Thermal characteristics of coal fires 2: results of measurements on simulated coal fires. J. Appl. Geophys. 63, 135–147 (2007)

    Article  Google Scholar 

  19. Richter, R., Coll, C.: Bandpass-resampling effects for the retrieval of surface emissivity. Appl. Opt. 41, 3523–3529 (2002)

    Article  Google Scholar 

  20. Merchant, C.J.: Thermal remote sensing of sea surface temperature. In: Kuenzer, C., Dech, S. (eds.) Thermal Infrared Remote Sensing, pp. 287–314 (2013)

    Google Scholar 

  21. Kaufman, Y., Remer, L., Ottmar, R., Ward, D., Rong, R.L., Kleidman, R., Fraser, R., Flynn, L., McDougal, D., Shelton, G.: Relationship Between Remotely Sensed Fire Intensity and Rate of Emission of Smoke: SCAR-C Experiment in Global Biomass Burning, pp. 685–696. MIT Press, Cambridge (1996). Levine, J. (ed.)

    Google Scholar 

  22. Brooks, F.A.: An introduction to physical microclimatology. Associated Students Store. University of California, Davis (1959)

    Google Scholar 

  23. Baldrige, A.M., Hook, S.J., Grove, C.I., Rivera, G.: The ASTER spectral library version 2.0. Remote Sens. Environ. 113, 711–715 (2009). https://speclib.jpl.nasa.gov/

  24. Gerighausen, H., Borg, E., Wloczyk, C., Fichtelmann, B., Günther, A., Vajen, H.-H., Rosenberg, M., Schulz, M., Engler, H.-G.: DEMMIN – a test site for the validation of remote sensing data products. In: Proceedings on AGRISAR and EAGLE Campaigns Final Workshop, ESA/ESTEC, Noordwijk, Netherland, 15–16 October, pp. 1–9 (2007)

    Google Scholar 

  25. Borg, E., Lippert, K., Zabel, E., Löpmeier, F.J., Fichtelmann, B., Jahncke, D., Maass, H.: DEMMIN – Teststandort zur Kalibrierung und Validierung von Fernerkundungsmissionen. In: Rebenstorf, R.W. (ed.) 15 Jahre Studiengang Vermessungswesen – Geodätisches Fachforum und Festakt, Neubrandenburg, 16–17 January, pp. 401–419 (2009)

    Google Scholar 

  26. DWD/Deutscher Wetterdienst: Download of Mean Precipitation. Period 1961–1990 (2006). http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?nfpb=true&_pageLabel=dwdwww_start&T3200039671164966383319gsbDocumentPath=Navigation%2FOeffentlichkeit%2FKlima__Umwelt%2FKlimadatenzentren%2FNKDZ%2Fkldaten__akt%2Fausgabe__mittelwerte__node.html__nnn%3Dtrue. Accessed 14 Feb 2006

  27. DWD/Deutscher Wetterdienst: Download of Mean Temperature. Period 1961–1990 (2007). http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?nfpb=true&_pageLabel=dwdwww_start&T3200039671164966383319gsbDocumentPath=Navigation%2FOeffentlichkeit%2FKlima__Umwelt%2FKlimadatenzentren%2FNKDZ%2Fkldaten__akt%2Fausgabe__mittelwerte__node.html__nnn%3Dtrue. Accessed 05 Dec 2007

  28. ESA. https://directory.eoportal.org/web/eoportal/satellite-missions/t/tet-1. Accessed 09 2015

  29. USGS. http://landsat.usgs.gov/band_designations_landsat_satellites.php. Accessed 09 2015

  30. Skrbek, W., Lorenz, E.: HSRS – an infrared sensor for hotspot detection. Proc. SPIE Infrared Spaceborne Remote Sens. VI 3437, 167–176 (1998)

    Article  Google Scholar 

  31. Zhukov, B., Lorenz, E., Oertel, D., Wooster, M., Roberts, G.: Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens. Environ. 100, 29–51 (2006)

    Article  Google Scholar 

  32. Dozier, J.: A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 11, 221–229 (1981)

    Article  Google Scholar 

  33. Richter, R., Schläpfer, D.: ATCOR Manual. Atmospheric/Topographic Correction for Satellite Imagery, (ATCOR-2/3 User Guide 9.0.2, March 2016).- DLR DLR-IB 565-01/15.- 263

    Google Scholar 

  34. Frauenberger, O., Börner, A., Borg, E., Halle, W., Lorenz, E., Mitchell, S., Paproth, C., Säuberlich, T., Terzibaschian, T., Wohlfeil, J.: Results on verification and validation of OOV-TET1 multi-spectral camera observations within the FireBIRD project. In: 10th IAA Symposium Small Satellites for Earth Observation, Berlin, Germany, 20–24 April, pp. 163–166. Wissenschaft und Technik Verlag, Berlin (2015)

    Google Scholar 

  35. Fischer, C., Klein, D., Kerr, G., Stein, E., Lorenz, E., Frauenberger, O., Borg, E.: Data validation and case studies using the TET-1 thermal infrared satellite system (ISRSE36-617). In: 36th International Symposium on Remote Sensing of Environment ISRSE36 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-7/W3, Berlin, Germany, 11–15 May 2015, pp. 1177–1182 (2015)

    Google Scholar 

  36. Schroeder, W., Oliv, P., Giglio, L., Quayle, B., Lorenz, E., Morelli, F.: Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 185, 210–220 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Leddig and Mr. Baals (Rustower Service Company) for supporting the experiment. We thank the colleagues of Mr. Küthe (Ordnungsamt Demmin); Mr. Daedelow and Mr. Maier of the Umweltamt/Abfallrecht und Immissionsschutz, Waren–Müritz, Mrs. Klemm, advisor of the Umweltamt/Naturschutz, Landschaftspflege, Eingriffsregelungen, Biotopschutz Demmin. And last but not least we thank Mr. Rohleder, head of voluntary fire brigade (Freiwillige Feuerwehr) Demmin, and his colleagues for fire test assessing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Scherntanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Borg, E. et al. (2017). High Temperature Fire Experiment for TET-1 and Landsat 8 in Test Site DEMMIN (Germany). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10407. Springer, Cham. https://doi.org/10.1007/978-3-319-62401-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62401-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62400-6

  • Online ISBN: 978-3-319-62401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics