Abstract
Automatic classification of drivers’ mental states is an important yet relatively unexplored topic. In this paper, we define a taxonomy of a set of complex mental states that are relevant to driving, namely: Happy, Bothered, Concentrated and Confused. We present our video segmentation and annotation methodology of a spontaneous dataset of natural driving videos from 10 different drivers. We also present our real-time annotation tool used for labelling the dataset via an emotion perception experiment and discuss the challenges faced in obtaining the ground truth labels. Finally, we present a methodology for automatic classification of drivers’ mental states. We compare SVM models trained on our dataset with an existing nearest neighbour model pre-trained on posed dataset, using facial Action Units as input features. We demonstrate that our temporal SVM approach yields better results. The dataset’s extracted features and validated emotion labels, together with the annotation tool, will be made available to the research community.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Please email marwa.mahmoud@cl.cam.ac.uk for the link and password.
- 2.
References
Adams, A., Robinson, P.: Automated recognition of complex categorical emotions from facial expressions and head motions. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 355–361. IEEE (2015)
Baltru, T., Robinson, P., Morency, L.P., et al.: Openface: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)
Baltrušaitis, T., Mahmoud, M., Robinson, P.: Cross-dataset learning and person-specific normalisation for automatic action unit detection. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–6. IEEE (2015)
Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Recognizing facial expression: machine learning and application to spontaneous behavior. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 568–573. IEEE (2005)
Cohn, J.F., De la Torre, F.: Automated face analysis for affective. In: The Oxford Handbook of Affective Computing, p. 131 (2014)
Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., Schröder, M.: ‘FEELTRACE’: An instrument for recording perceived emotion in real time. In: ISCA Tutorial and Research Workshop (ITRW) on Speech and Emotion (2000)
Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)
Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, New York (1997)
El Kaliouby, R., Robinson, P.: Real-time inference of complex mental states from facial expressions and head gestures. In: Kisačanin, B., Pavlović, V., Huang, T.S. (eds.) Real-time Vision for Human-computer Interaction, pp. 181–200. Springer, Heidelberg (2005)
Gudi, A., Tasli, H.E., den Uyl, T.M., Maroulis, A.: Deep learning based FACS action unit occurrence and intensity estimation. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–5. IEEE (2015)
Gunes, H., Schuller, B.: Categorical and dimensional affect analysis in continuous input: Current trends and future directions. Image Vis. Comput. 31(2), 120–136 (2013)
van den Haak, P., van Lon, R., van der Meer, J., Rothkrantz, L.: Stress assessment of car-drivers using EEG-analysis. In: Proceedings of the 11th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing on International Conference on Computer Systems and Technologies, pp. 473–477. ACM (2010)
Hu, S., Zheng, G.: Driver drowsiness detection with eyelid related parameters by support vector machine. Expert Syst. Appl. 36(4), 7651–7658 (2009)
Jones, C.M., Jonsson, I.M.: Automatic recognition of affective cues in the speech of car drivers to allow appropriate responses. In: Proceedings of the 17th Australia Conference on Computer-Human Interaction: Citizens Online: Considerations for Today and the Future. Computer-Human Interaction Special Interest Group (CHISIG) of Australia, pp. 1–10 (2005)
Katsis, C., Goletsis, Y., Rigas, G., Fotiadis, D.: A wearable system for the affective monitoring of car racing drivers during simulated conditions. Transp. Res. Part C: Emerg. Technol. 19(3), 541–551 (2011)
Katsis, C.D., Katertsidis, N., Ganiatsas, G., Fotiadis, D.I.: Toward emotion recognition in car-racing drivers: A biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38(3), 502–512 (2008)
Krippendorff, K.: Agreement and information in the reliability of coding. Commun. Methods Measures 5(2), 93–112 (2011)
Lee, H.C., Cameron, D., Lee, A.H.: Assessing the driving performance of older adult drivers: on-road versus simulated driving. Accid. Anal. Prev. 35(5), 797–803 (2003)
Lisetti, C.L., Nasoz, F.: Affective intelligent car interfaces with emotion recognition. In: Proceedings of 11th International Conference on Human Computer Interaction, Las Vegas. Citeseer (2005)
Mahmoud, M., Baltrušaitis, T., Robinson, P., Riek, L.D.: 3D corpus of spontaneous complex mental states. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 205–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24600-5_24
McKeown, G., Valstar, M.F., Cowie, R., Pantic, M.: The semaine corpus of emotionally coloured character interactions. In: 2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 1079–1084. IEEE (2010)
Nasoz, F., Ozyer, O., Lisetti, C.L., Finkelstein, N.: Multimodal affective driver interfaces for future cars. In: Proceedings of the Tenth ACM International Conference on Multimedia, pp. 319–322. ACM (2002)
Oehl, M., Siebert, F.W., Tews, T.-K., Höger, R., Pfister, H.-R.: Improving human-machine interaction–a non invasive approach to detect emotions in car drivers. In: Jacko, J.A. (ed.) HCI 2011. LNCS, vol. 6763, pp. 577–585. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21616-9_65
O?Reilly, H., Pigat, D., Fridenson, S., Berggren, S., Tal, S., Golan, O., Bölte, S., Baron-Cohen, S., Lundqvist, D.: The EU-emotion stimulus set A validation study. Behav. Res. Methods 48(2), 1–10 (2015)
Ringeval, F., Sonderegger, A., Sauer, J., Lalanne, D.: Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2013)
Roidl, E., Frehse, B., Höger, R.: Emotional states of drivers and the impact on speed, acceleration and traffic violations? a simulator study. Accid. Anal. Prev. 70, 282–292 (2014)
Rozin, P., Cohen, A.B.: High frequency of facial expressions corresponding to confusion, concentration, and worry in an analysis of naturally occurring facial expressions of americans. Emotion 3(1), 68 (2003)
Baron-Cohen, S., Ofer Golan, S.W.: A new taxonomy of human emotions (2004)
Valstar, M.F., Almaev, T., Girard, J.M., McKeown, G., Mehu, M., Yin, L., Pantic, M., Cohn, J.F.: FERA 2015-second facial expression recognition and analysis challenge. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–8. IEEE (2015)
Whitehill, J., Bartlett, M., Movellan, J.: Automatic facial expression recognition for intelligent tutoring systems. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–6. IEEE (2008)
Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P., Girard, J.M.: BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)
Acknowledgment
The work presented in this paper was funded and supported by Jaguar Land Rover, Coventry, UK.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ma, Z., Mahmoud, M., Robinson, P., Dias, E., Skrypchuk, L. (2017). Automatic Detection of a Driver’s Complex Mental States. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-62398-6_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62397-9
Online ISBN: 978-3-319-62398-6
eBook Packages: Computer ScienceComputer Science (R0)