Advertisement

A Feasibility Pump and a Local Branching Heuristics for the Weight-Constrained Minimum Spanning Tree Problem

  • Cristina RequejoEmail author
  • Eulália Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)

Abstract

The Weight-constrained Minimum Spanning Tree problem (WMST) is a combinatorial optimization problem aiming to find a spanning tree of minimum cost with total edge weight not exceeding a given specified limit. This problem has important applications in the telecommunications network design and communication networks.

In order to obtain optimal or near optimal solutions to the WMST problem we use heuristic methods based on formulations for finding feasible solutions. The feasibility pump heuristic starts with the LP solution, iteratively fixes the values of some variables and solves the corresponding LP problem until a feasible solution is achieved. In the local branching heuristic a feasible solution is improved by using a local search scheme in which the solution space is reduced to the neighborhood of a feasible solution that is explored for a better feasible solution. Extensive computational results show that these heuristics are quite effective in finding feasible solutions and present small gap values. Each heuristic can be used independently, however the best results were obtained when they are used together and the feasible solution obtained by the feasibility pump heuristic is improved by the local branching heuristic.

Keywords

Weighted MST Minimum spanning tree Feasibility Pump Local Branching Heuristics 

Notes

Acknowledgements

The research of the authors has been partially supported by Portuguese funds through the CIDMA (Center for Research and Development in Mathematics and Applications) and the FCT, the Portuguese Foundation for Science and Technology, within project UID/MAT/04106/2013.

References

  1. 1.
    Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optim. 4(1), 77–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side constraint. Comput. Oper. Res. 9, 287–296 (1982)CrossRefGoogle Scholar
  3. 3.
    Agra, A., Cerveira, A., Requejo, C., Santos, E.: On the weight-constrained minimum spanning tree problem. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 156–161. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21527-8_20 CrossRefGoogle Scholar
  4. 4.
    Agra, A., Requejo, C., Santos, E.: Implicit cover inequalities. J. Combin. Optim. 31(3), 1111–1129 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems. Discrete Optim. 4(1), 63–76 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search and local branching. Comput. Oper. Res. 33(10), 3034–3045 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM J. Comput. 33(2), 261–268 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Henn, S.: Weight-constrained minimum spanning tree problem. Master’s thesis, University of Kaiserslautern, Kaiserslautern, Germany (2007)Google Scholar
  11. 11.
    Hong, S., Chung, S., Park, B.H.: A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem. Oper. Res. Lett. 32, 233–239 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Ball, M., Magnanti, T.L., Monma, C., Nemhauser, G.L. (eds.) Network Models, Handbooks in Operations Research and Management Science, vol. 7, pp. 503–615. Elsevier Science Publishers, North-Holland (1995)Google Scholar
  13. 13.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996). doi: 10.1007/3-540-61422-2_121 CrossRefGoogle Scholar
  16. 16.
    Requejo, C., Agra, A., Cerveira, A., Santos, E.: Formulations for the weight-constrained minimum spanning tree problem. AIP Conf. Proc. 1281, 2166–2169 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Requejo, C., Santos, E.: Lagrangian based algorithms for the weight-constrained minimum spanning tree problem. In: Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization, pp. 38–41 (2011)Google Scholar
  18. 18.
    Shogan, A.: Constructing a minimal-cost spanning tree subject to resource constraints and flow requirements. Networks 13, 169–190 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xue, G.: Primal-dual algorithms for computing weight-constrained shortest paths and weight-constrained minimum spanning trees. In: Proceedings of the IEEE International Conference on Performance, Computing, and Communications, pp. 271–277 (2000)Google Scholar
  21. 21.
    Yamada, T., Watanabe, K., Kataoka, S.: Algorithms to solve the knapsack constrained maximum spanning tree problem. Int. J. Comput. Math. 82, 23–34 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of AveiroAveiroPortugal
  2. 2.ISLA-Higher Institute of Santarém and LeiriaLeiriaPortugal

Personalised recommendations