Skip to main content

Polynomials over Quaternions and Coquaternions: A Unified Approach

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10405))

Included in the following conference series:

Abstract

This paper aims to present, in a unified manner, results which are valid on both the algebras of quaternions and coquaternions and, simultaneously, call the attention to the main differences between these two algebras. The rings of one-sided polynomials over each of these algebras are studied and some important differences in what concerns the structure of the set of their zeros are remarked. Examples illustrating this different behavior of the zero-sets of quaternionic and coquaternionic polynomials are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known, in the literature, as split-quaternions, para-quaternions, anti-quaternions or hyperbolic quaternions.

  2. 2.

    This coincides with the Euclidean norm of the 4-vector \((q_0,q_1,q_2, q_3)\).

  3. 3.

    Right one-sided polynomials are defined in an analogous manner, by considering the coefficients on the right of the variable; all the results for left one-sided polynomials have corresponding results for right one-sided polynomials and hence we restrict our study to polynomials of the first type.

  4. 4.

    Recall that, in the case of quaternions, quasi-similarity and similarity classes coincide, so, in that case, we can also say that \(\mathrm{\Psi }_q\) is an invariant of [q].

  5. 5.

    Recall that this can only happen in the case of coquaternions.

References

  1. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. International Series of Monographs of Physics, vol. 88. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Alagöz, Y., Oral, K.H., Yüce, S.: Split quaternion matrices. Miskolc Math. Notes 13, 223–232 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Artzy, R.: Dynamics of quadratic functions in cycle planes. J. Geom. 44, 26–32 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, J.L.: Matrices of quaternions. Pacific J. Math. 1(3), 329–335 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brody, D.C., Graefe, E.M.: On complexified mechanics and coquaternions. J. Phys. A Math. Theor. 44, 1–9 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Cockle, J.: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Philos. Mag. 35(3), 434–435 (1849)

    Google Scholar 

  7. De Leo, S., Ducati, G., Leonardi, V.: Zeros of unilateral quaternionic polynomials. Electron. J. Linear Algebra 15, 297–313 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Falcão, M.I.: Newton method in the context of quaternion analysis. Appl. Math. Comput. 236, 458–470 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Gordon, B., Motzkin, T.S.: On the zeros of polynomials over division rings. Trans. Am. Math. Soc. 116, 218–226 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gürlebeck, K., Sprößig, W.: Quaternionic Calculus for Engineers and Physicists. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  11. Hamilton, W.R.: A new species of imaginaries quantities connected with a theory of quaternions. Proc. R. Ir. Acad. 2, 424–434 (1843)

    Google Scholar 

  12. Janovská, D., Opfer, G.: Computing quaternionic roots in Newton’s method. Electron. Trans. Numer. Anal. 26, 82–102 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Janovská, D., Opfer, G.: The classification and the computation of the zeros of quaternionic, two-sided polynomials. Numer. Math. 115(1), 81–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Janovská, D., Opfer, G.: Linear equations and the Kronecker product in coquaternions. Mitt. Math. Ges. Hamburg 33, 181–196 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Janovská, D., Opfer, G.: Zeros and singular points for one-sided coquaternionic polynomials with an extension to other\(\mathbb{R}^4\) algebras. Electron. Trans. Numer. Anal. 41, 133–158 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Kalantari, B.: Algorithms for quaternion polynomial root-finding. J. Complex. 29, 302–322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kula, L., Yayli, Y.: Split quaternions and rotations in semi euclidean space \(E^4_2\). J. Korean Math. Soc. 44, 1313–1327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lam, T.Y.: A First Course in Noncommutative Rings. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  19. Malonek, H.R.: Quaternions in applied sciences. A historical perspective of a mathematical concept. In: 17th International Conference on the Application of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar (2003)

    Google Scholar 

  20. Miranda, F., Falcão, M.I.: Modified quaternion Newton methods. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 146–161. Springer, Cham (2014). doi:10.1007/978-3-319-09144-0_11

    Google Scholar 

  21. Niven, I.: Equations in quaternions. Amer. Math. Monthly 48, 654–661 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  22. Özdemir, M.: The roots of a split quaternion. Appl. Math. Lett. 22(2), 258–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Özdemir, M., Ergin, A.: Some geometric applications of split quaternions. In: Proceedings 16th International Conference Jangjeon Mathematical Society, vol. 16, pp. 108–115 (2005)

    Google Scholar 

  24. Özdemir, M., Ergin, A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geometry Phys. 56(2), 322–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pogorui, A., Shapiro, M.: On the structure of the set of zeros of quaternionic polynomials. Complex Variables Theor. Appl. 49(6), 379–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pogoruy, A.A., Rodŕguez-Dagnino, S.: Some algebraic and analytical properties of coquaternion algebra. Adv. Appl. Clifford Algebras 20(1), 79–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Serôdio, R., Siu, L.S.: Zeros of quaternion polynomials. Appl. Math. Letters 14(2), 237–239 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serôdio, R., Pereira, E., Vitória, J.: Computing the zeros of quaternion polynomials. Comput. Math. Appl. 42(8–9), 1229–1237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)

    Article  Google Scholar 

  30. Topuridze, N.: On roots of quaternion polynomials. J. Math. Sci. 160, 843–855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research at CMAT was financed by Portuguese Funds through FCT - Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013. Research at NIPE was carried out within the funding with COMPETE reference number POCI-01-0145-FEDER-006683 (UID/ECO/03182/2013), with the FCT/MEC’s (Fundação para a Ciência e a Tecnologia, I.P.) financial support through national funding and by the ERDF through the Operational Programme on “Competitiveness and Internationalization - COMPETE 2020” under the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Joana Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Falcão, M.I., Miranda, F., Severino, R., Soares, M.J. (2017). Polynomials over Quaternions and Coquaternions: A Unified Approach. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics