Skip to main content

Depth Distribution in High Dimensions

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

Abstract

Motivated by the analysis of range queries in databases, we introduce the computation of the Depth Distribution of a set \(\mathcal {B}\) of axis aligned boxes, whose computation generalizes that of the Klee’s Measure and of the Maximum Depth. In the worst case over instances of fixed input size n, we describe an algorithm of complexity within \(\mathcal {O}(n^\frac{d+1}{2}\log n)\), using space within \(\mathcal {O}(n\log n)\), mixing two techniques previously used to compute the Klee’s Measure. We refine this result and previous results on the Klee’s Measure and the Maximum Depth for various measures of difficulty of the input, such as the profile of the input and the degeneracy of the intersection graph formed by the boxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khamis, M.A., Ngo, H.Q., Ré, C., Rudra, A.: Joins via geometric resolutions: worst-case and beyond. In: Proceedings of the 34th ACM Symposium on Principles of Database Systems (PODS), Melbourne, Victoria, Australia, 31 May–4 June, 2015, pp. 213–228 (2015)

    Google Scholar 

  2. Afshani, P.: Fast computation of output-sensitive maxima in a word RAM. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Portland, Oregon, USA, January 5–7, 2014, pp. 1414–1423. SIAM (2014)

    Google Scholar 

  3. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting and rectangle stabbing in the pointer machine model. In: Symposuim on Computational Geometry (SoCG), Chapel Hill, NC, USA, June 17–20, 2012, pp. 323–332 (2012)

    Google Scholar 

  4. Afshani, P., Barbay, J., Chan, T.M.: Instance-optimal geometric algorithms. J. ACM (JACM) 64(1), 3:1–3:38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbay, J., Pérez-Lantero, P., Rojas-Ledesma, J.: Depth distribution in high dimension. ArXiv e-prints (2017)

    Google Scholar 

  6. Bentley, J.L.: Algorithms for Klee’s rectangle problems. Unpublished notes (1977)

    Google Scholar 

  7. Bringmann, K.: An improved algorithm for Klee’s measure problem on fat boxes. Comput. Geom. Theor. Appl. 45(5–6), 225–233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bringmann, K.: Bringing order to special cases of Klee’s measure problem. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 207–218. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40313-2_20

    Chapter  Google Scholar 

  9. Chan, T.M.: A (slightly) faster algorithm for Klee’s Measure Problem. In: Proceedings of the 24th ACM Symposium on Computational Geometry (SoCG), College Park, MD, USA, June 9–11, 2008, pp. 94–100 (2008)

    Google Scholar 

  10. Chan, T.M.: Klee’s measure problem made easy. In: 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Berkeley, CA, USA, 26–29 October, 2013, pp. 410–419 (2013)

    Google Scholar 

  11. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), New York, USA, pp. 1–6. ACM (1987)

    Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  13. d’Amore, F., Nguyen, V.H., Roos, T., Widmayer, P.: On optimal cuts of hyperrectangles. Computing 55(3), 191–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H.: A new approach to rectangle intersections part I. J. Comput. Math. (JCM) 13(3–4), 209–219 (1983)

    MATH  Google Scholar 

  15. Fredman, M.L., Weide, B.W.: On the complexity of computing the measure of \(\cup ^{n}_1 [a_i; b_i]\). Commun. ACM (CACM) 21(7), 540–544 (1978)

    Article  MATH  Google Scholar 

  16. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: International Symposium on Symbolic and Algebraic Computation (ISSAC), Kobe, Japan, July 23–25, 2014, pp. 296–303. ACM (2014)

    Google Scholar 

  17. Kirkpatrick, D.G., Seidel, R.: Output-size sensitive algorithms for finding maximal vectors. In: Proceedings of the First Annual Symposium on Computational Geometry (SoCG), Baltimore, Maryland, USA, June 5–7, 1985, pp. 89–96 (1985)

    Google Scholar 

  18. Klee, V.: Can the measure of \(\cup ^{n}_1 [a_i; b_i]\) be computed in less than O(n log n) steps? Am. Math. Mon. (AMM) 84(4), 284–285 (1977)

    Article  MATH  Google Scholar 

  19. Lick, D.R., White, A.T.: k-Degenerate graphs. Can. J. Math. (CJM) 22, 1082–1096 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM (JACM) 30(3), 417–427 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moffat, A., Petersson, O.: An overview of adaptive sorting. Aust. Comput. J. (ACJ) 24(2), 70–77 (1992)

    Google Scholar 

  22. Overmars, M.H., Yap, C.: New upper bounds in Klee’s measure problem. SIAM J. Comput. (SICOMP) 20(6), 1034–1045 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yildiz, H., Hershberger, J., Suri, S.: A discrete and dynamic version of Klee’s measure problem. In: Proceedings of the 23rd Annual Canadian Conference on Computational Geometry (CCCG), Toronto, Ontario, Canada, August 10–12, 2011 (2011)

    Google Scholar 

Download references

Funding

All authors were supported by the Millennium Nucleus “Information and Coordination in Networks” ICM/FIC RC130003. Jérémy Barbay and Pablo Pérez-Lantero were supported by the projects CONICYT Fondecyt/Regular nos 1170366 and 1160543 (Chile) respectively, while Javiel Rojas-Ledesma was supported by CONICYT-PCHA/Doctorado Nacional/2013-63130209 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javiel Rojas-Ledesma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Barbay, J., Pérez-Lantero, P., Rojas-Ledesma, J. (2017). Depth Distribution in High Dimensions. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics