Incentive Ratios of a Proportional Sharing Mechanism in Resource Sharing

  • Zhou Chen
  • Yukun Cheng
  • Qi Qi
  • Xiang Yan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10392)


In a resource sharing system, resources are shared among multiple interconnected peers. Peers act as both suppliers and customers of resources by making a certain amount of their resource directly available to others. In this paper we focus on a proportional sharing mechanism, which is fair, efficient and guarantees a market equilibrium in the resource sharing system. We study the incentives an agent may manipulate such a mechanism, by the vertex splitting strategy, for personal gains and adopt a concept called incentive ratio to quantify the amount of gains. For the resource sharing system where the underlying network ia a cycle, we prove that the incentive ratio on this kind of network is bounded by \(2\le \zeta \le 4\). Furthermore, the incentive ratio on an even cycle, a cycle with even number of vertices, is proved to be exactly 2.


Mechanism design Market equilibrium Combinatorial optimization Incentive ratio Resource sharing 



This research was partially supported by the National Nature Science Foundation of China (No. 11301475, 11426026, 61632017, 61173011), by a Project 985 grant of Shanghai Jiao Tong University, and by the Research Grant Council of Hong Kong (ECS Project No. 26200314, GRF Project No. 16213115 and GRF Project No.16243516).


  1. 1.
    Adsul, B., Babu, C.S., Garg, J., Mehta, R., Sohoni, M.: Nash equilibria in fisher market. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 30–41. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16170-4_4 CrossRefGoogle Scholar
  2. 2.
    Alkalay-Houlihan, C., Vetta, A.: False-name bidding and economic efficiency in combinatorial auctions. In: AAAI, pp. 538–544 (2014)Google Scholar
  3. 3.
    Brânzei, S., Chen, Y., Deng, X., Aris, F., Frederiksen, S., Zhang, J.: The fisher market game: equilibrium and welfare. In: AAAI (2014)Google Scholar
  4. 4.
    Chen, N., Deng, X., Zhang, H., Zhang, J.: Incentive ratios of fisher markets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 464–475. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31585-5_42 CrossRefGoogle Scholar
  5. 5.
    Chen, N., Deng, X., Zhang, J.: How profitable are strategic behaviors in a market? In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 106–118. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23719-5_10 CrossRefGoogle Scholar
  6. 6.
    Cheng, Y., Deng, X., Pi, Y., Yan, X.: Can bandwidth sharing be truthful? In: Hoefer, M. (ed.) SAGT 2015. LNCS, vol. 9347, pp. 190–202. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48433-3_15 CrossRefGoogle Scholar
  7. 7.
    Cheng, Y., Deng, X., Qi, Q., Yan, X.: Truthfulness of a proportional sharing mechanism in resource exchange. In: IJCAI, pp. 187–193 (2016)Google Scholar
  8. 8.
    Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust incentive techniques for peer-to-peer networks. In: EC (2004)Google Scholar
  9. 9.
    Iwasaki, A., Conitzer, V., Omori, Y., Sakurai, Y., Todo, T., Guo, M., Yokoo, M.: Worst-case efficiency ratio in false-name-proof combinatorial auction mechanisms. In: AAMAS, pp. 633–640 (2010)Google Scholar
  10. 10.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: STACS, pp. 404–413 (1999)Google Scholar
  11. 11.
    Polak, I.: The incentive ratio in exchange economies. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 685–692. Springer, Cham (2016). doi: 10.1007/978-3-319-48749-6_49 CrossRefGoogle Scholar
  12. 12.
    Schollmeier, R.: A definition of peer-to-peer networking for the classification of peer-to-peer architectures and applications. In: P2P, pp. 101–102 (2001)Google Scholar
  13. 13.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wu, F., Zhang, L.: Proportional response dynamics leads to market equilibrium. In: STOC, pp. 354–363 (2007)Google Scholar
  15. 15.
    Yokoo, M.: The characterization of strategy/false-name proof combinatorial auction protocols: Price-oriented, rationing-free protocol. In: IJCAI, pp. 733–739 (2003)Google Scholar
  16. 16.
    Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auction protocol against false-name bids. Artif. Intell. 130, 167–181 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.The Hong Kong University of Science and TechnologySai KungHong Kong
  2. 2.Suzhou University of Science and TechnologySuzhouChina
  3. 3.Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations