Skip to main content

The Approximability of the p-hub Center Problem with Parameterized Triangle Inequality

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Abstract

A complete weighted graph \(G= (V, E, w)\) is called \(\varDelta _{\beta }\)-metric, for some \(\beta \ge 1/2\), if G satisfies the \(\beta \)-triangle inequality, i.e., \(w(u,v) \le \beta \cdot (w(u,x) + w(x,v))\) for all vertices \(u,v,x\in V\). Given a \(\varDelta _{\beta }\)-metric graph \(G=(V, E, w)\) and an integer p, the \(\varDelta _{\beta }\)-p Hub Center Problem (\(\varDelta _{\beta }\)-pHCP) is to find a spanning subgraph \(H^{*}\) of G such that (i) vertices (hubs) in \(C^{*}{\subset }V\) form a clique of size p in \(H^{*}\); (ii) vertices (non-hubs) in \(V{\setminus }C^{*}\) form an independent set in \(H^{*}\); (iii) each non-hub \(v\in V{\setminus }C^{*}\) is adjacent to exactly one hub in \(C^{*}\); and (iv) the diameter \(D(H^{*})\) is minimized. For \(\beta = 1\), \(\varDelta _{\beta }\)-pHCP is NP-hard. (Chen et al., CMCT 2016) proved that for any \(\varepsilon >0\), it is NP-hard to approximate the \(\varDelta _{\beta }\)-pHCP to within a ratio \(\frac{4}{3}-\varepsilon \) for \(\beta = 1\). In the same paper, a \(\frac{5}{3}\)-approximation algorithm was given for \(\varDelta _{\beta }\)-pHCP for \(\beta = 1\). In this paper, we study \(\varDelta _{\beta }\)-pHCP for all \(\beta \ge \frac{1}{2}\). We show that for any \(\varepsilon > 0\), to approximate the \(\varDelta _{\beta }\)-pHCP to a ratio \(g(\beta ) - \varepsilon \) is NP-hard and we give \(r(\beta )\)-approximation algorithms for the same problem where \(g(\beta )\) and \(r(\beta )\) are functions of \(\beta \). If \(\beta \le \frac{3 - \sqrt{3}}{2}\), we have \(r(\beta ) = g(\beta ) = 1\), i.e., \(\varDelta _{\beta }\)-pHCP is polynomial time solvable. If \(\frac{3-\sqrt{3}}{2} < \beta \le \frac{2}{3}\), we have \(r(\beta ) = g(\beta ) = \frac{3\beta - 2\beta ^2}{3(1-\beta )}\). For \(\frac{2}{3} \le \beta \le \frac{5+\sqrt{5}}{10}\), \(r(\beta )=g(\beta ) = \beta +\beta ^2\). Moreover, for \(\beta \ge 1\), we have \(g(\beta ) = \beta \cdot \frac{4\beta - 1}{3\beta -1}\) and \(r(\beta ) = 2\beta \), the approximability of the problem (i.e., upper and lower bound) is linear in \(\beta \).

Parts of this research were supported by the Ministry of Science and Technology of Taiwan under grants MOST 105–2221–E–006–164–MY3, and MOST 103–2221–E–006–135–MY3.

Li-Hsuan Chen is supported by the Ministry of Science and Technology of Taiwan under grant MOST 106–2811–E–006–008.

Ling-Ju Hung is supported by the Ministry of Science and Technology of Taiwan under grants MOST 105–2811–E–006–046.

Part of this work was done while Ralf Klasing was visiting the Department of Computer Science and Information Engineering at National Cheng Kung University. This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02). Research supported by the LaBRI under the “Projets émergents” program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190, 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38, 59–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms depending on parameterized triangle inequalities. SIAM J. Discr. Math. 8, 1–16 (1995)

    Article  MATH  Google Scholar 

  4. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On the Hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 59–70. Springer, Heidelberg (2002). doi:10.1007/3-540-36206-1_7

    Chapter  Google Scholar 

  6. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On k-edge-connectivity problems with sharpened triangle inequality. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 189–200. Springer, Heidelberg (2003). doi:10.1007/3-540-44849-7_24

    Chapter  Google Scholar 

  7. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On \(k\)-connectivity problems with sharpened triangle inequality. J. Discr. Algorithms 6(4), 605–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Inf. Process. Lett. 75, 133–138 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000). doi:10.1007/3-540-46521-9_7

    Chapter  Google Scholar 

  10. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000). doi:10.1007/3-540-46541-3_32

    Chapter  Google Scholar 

  11. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, Chapman & Hall/CRC, Chap. 31 (2007)

    Google Scholar 

  12. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO Theor. Inf. Appl. 34, 213–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D.: General variable neighborhood search for the uncapacitated single allocation \(p\)-hub center problem, Optimization Letters. doi:10.1007/s11590-016-1004-x

  14. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)

    Article  MATH  Google Scholar 

  15. Campbell, J.F., Ernst, A.T.: Hub location problems. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 373–407. Springer, Berlin (2002)

    Chapter  Google Scholar 

  16. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for single allocation \(k\)-hub center problem. In: Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2016), pp. 13–18 (2016)

    Google Scholar 

  17. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R., Lee, C.-W., Wu, B.Y.: On the complexity of the star p-hub center problem with parameterized triangle inequality. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 152–163. Springer, Cham (2017). doi:10.1007/978-3-319-57586-5_14

    Chapter  Google Scholar 

  18. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for the star k-hub center problem in metric graphs. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 222–234. Springer, Cham (2016). doi:10.1007/978-3-319-42634-1_18

    Chapter  Google Scholar 

  19. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 2230–2241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  21. Hromkovič, J.: Stability of approximation algorithms and the knapsack problem. In: Karhumäki, J., Maurer, H., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 238–249. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Hromkovič, J.: Algorithmics for Hard Problems - Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  23. Kara, B.Y., Tansel, B.Ç.: On the single-assignment \(p\)-hub center problem. Eur. J. Oper. Res. 125, 648–655 (2000)

    Article  MATH  Google Scholar 

  24. Liang, H.: The hardness and approximation of the star p-hub center problem. Oper. Res. Lett. 41, 138–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, T., Ernst, A., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 3143–3151 (2009)

    Article  MATH  Google Scholar 

  26. Pamuk, F.S., Sepil, C.: A solution to the hub center problem via a single-relocation algorithm with tabu search. IIE Trans. 33, 399–411 (2001)

    Google Scholar 

  27. Rabbani, M., Kazemi, S.M.: Solving uncapacitated multiple allocation \(p\)-hub center problem by Dijkstra’s algorithm-based genetic algorithm and simulated annealing. Int. J. Ind. Eng. Comput. 6, 405–418 (2015)

    Google Scholar 

  28. Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated \(r\)-allocation \(p\)-hub median problem. Optim. Lett. doi:10.1007/s11590-015-0867-6

  29. Yaman, H., Elloumi, S.: Star \(p\)-hub center problem and star \(p\)-hub median problem with bounded path lengths. Comput. Oper. Res. 39, 2725–2732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, K., Liu, Y., Yang, G.: An improved hybrid particle swarm optimization algorithm for fuzzy \(p\)-hub center problem. Comput. Ind. Eng. 64, 133–142 (2013)

    Article  Google Scholar 

  31. Yang, K., Liu, Y., Yang, G.: Solving fuzzy \(p\)-hub center problem by genetic algorithm incorporating local search. Appl. Soft Comput. 13, 2624–2632 (2013)

    Article  Google Scholar 

  32. Yang, K., Liu, Y., Yang, G.: Optimizing fuzzy \(p\)-hub center problem with generalized value-at-risk criterion. Appl. Math. Model. 38, 3987–4005 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hsuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, LH., Hsieh, SY., Hung, LJ., Klasing, R. (2017). The Approximability of the p-hub Center Problem with Parameterized Triangle Inequality. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics