Skip to main content

Energy System Integration

  • Chapter
  • First Online:
Power System Optimization Modeling in GAMS
  • 4686 Accesses

Abstract

This chapter provides a solution for energy system integration (ESI) problem in GAMS. The ESI analysis refers to a class of studies which investigate the potential in different energy sectors (water, gas, and electricity) for moving toward a more environmentally friendly and efficient energy supply. The main idea is how to harvest the flexibilities in each energy carrier in a larger framework. In this chapter, the coordination between water desalination systems and power system, gas network-power network, and finally the concept of energy hub is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Santhosh, A.M. Farid, K. Youcef-Toumi, Real-time economic dispatch for the supply side of the energy-water nexus. Appl. Energy 122, 42–52 (2014)

    Article  Google Scholar 

  2. R.D. Zimmerman, C.E. Murillo-Sanchez, R.J. Thomas, Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

  3. A.J. Conejo, M. Carrión, J.M. Morales, Decision Making Under Uncertainty in Electricity Markets, vol. 1 (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  4. F. Bouffard, F.D. Galiana, A.J. Conejo, Market-clearing with stochastic security-part II: case studies. IEEE Trans. Power Syst. 20(4), 1827–1835 (2005)

    Article  Google Scholar 

  5. D. De Wolf, Y. Smeers, The gas transmission problem solved by an extension of the simplex algorithm. Manag. Sci. 46(11), 1454–1465 (2000)

    Article  MATH  Google Scholar 

  6. T. Li, M. Eremia, M. Shahidehpour, Interdependency of natural gas network and power system security. IEEE Trans. Power Syst. 23(4), 1817–1824 (2008)

    Article  Google Scholar 

  7. A. Martinez-Mares, C.R. Fuerte-Esquivel, A unified gas and power flow analysis in natural gas and electricity coupled networks. IEEE Trans. Power Syst. 27(4), 2156–2166 (2012)

    Article  Google Scholar 

  8. L. Bai, F. Li, T. Jiang, H. Jia, Robust scheduling for wind integrated energy systems considering gas pipeline and power transmission n-1 contingencies. IEEE Trans. Power Syst. 32(2), 1582–1584 (2017)

    Google Scholar 

  9. J. Munoz, N. Jimenez-Redondo, J. Perez-Ruiz, J. Barquin, Natural gas network modeling for power systems reliability studies. in 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 4, June 2003, p. 8

    Google Scholar 

  10. M. Qadrdan, M. Chaudry, J. Wu, N. Jenkins, J. Ekanayake, Impact of a large penetration of wind generation on the GB gas network. Energy Policy 38(10), 5684–5695 (2010)

    Article  Google Scholar 

  11. H.S. de Boer, L. Grond, H. Moll, R. Benders, The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 72, 360–370 (2014)

    Article  Google Scholar 

  12. M. Geidl, G. Koeppel, P. Favre-Perrod, B. Klöckl, G. Andersson, K. Fröhlich, The energy hub–a powerful concept for future energy systems. in Third Annual Carnegie Mellon Conference on the Electricity Industry, Pittsburgh (2007), pp. 13–14

    Google Scholar 

  13. S.D. Beigvand, H. Abdi, M. La Scala, A general model for energy hub economic dispatch. Appl. Energy 190, 1090–1111 (2017)

    Article  Google Scholar 

  14. M. Batić, N. Tomašević, G. Beccuti, T. Demiray, S. Vraneš, Combined energy hub optimisation and demand side management for buildings. Energy Build. 127, 229–241 (2016)

    Article  Google Scholar 

  15. K. Kampouropoulos, F. Andrade, Energy hub optimization applied on car manufacturing plants. in ANDESCON, 2016 IEEE (IEEE, Piscataway, 2016), pp. 1–4

    Google Scholar 

  16. A. Soroudi, B. Mohammadi-Ivatloo, A. Rabiee, Energy hub management with intermittent wind power. in Large Scale Renewable Power Generation (Springer, Singapore, 2014), pp. 413–438

    Google Scholar 

  17. A. Dolatabadi, B. Mohammadi-Ivatloo, M. Abapour, S. Tohidi, Optimal stochastic design of wind integrated energy hub. IEEE Trans. Ind. Inf. 99, 1–1 (2017). doi: 10.1109/TII.2017.2664101

    Article  Google Scholar 

  18. M. Geidl, Integrated modeling and optimization of multi-carrier energy systems. PhD thesis, TU Graz, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soroudi, A. (2017). Energy System Integration. In: Power System Optimization Modeling in GAMS. Springer, Cham. https://doi.org/10.1007/978-3-319-62350-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62350-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62349-8

  • Online ISBN: 978-3-319-62350-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics