Instrument Malfunction

  • Ziho Lee
  • Daniel D. Eun


Robotic instrument malfunctions may adversely affect clinical outcomes. Depending on the specific type, severity, and timing, instrument malfunctions may increase operative costs, cause operating room delays, and even lead to unintended patient injury. There are two major types of instrument malfunctions: mechanical, which refers to a physical defect in an instrument that compromises its normal range of motion and/or function, and electrical, which refers to an insulation defect in an instrument that causes an electrical current to deviate from its intended course. As instrument malfunctions may occur at any point during an operation, it is critical that the surgeon take preventative measures to minimize instrument malfunctions, understand the risk factors associated with instrument malfunctions, maintain vigilance for diagnosing instrument malfunctions, and know how to treat instrument malfunctions when they occur.


Arcing Cable fraying Electrical malfunction Instrument fragmentation Instrument malfunction Insulation failure Mechanical malfunction Robotic surgery 



Manufacturer and User Facility Device Experience


Tip cover accessory


United States Food and Drug Administration


  1. 1.
    Chen CC, Ou YC, Yang CK, Chiu KY, Wang SS, Su CK, et al. Malfunction of the da Vinci robotic system in urology. Int J Urol. 2012;19(8):736–40. Epub 2012/04/11.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim WT, Ham WS, Jeong W, Song HJ, Rha KH, Choi YD. Failure and malfunction of da Vinci Surgical systems during various robotic surgeries: experience from six departments at a single institute. Urology. 2009;74(6):1234–7. Epub 2009/09/01.CrossRefPubMedGoogle Scholar
  3. 3.
    Friedman DC, Lendvay TS, Hannaford B. Instrument Failures for the da Vinci Surgical System: a Food and Drug Administration MAUDE Database Study. Surg Endosc. 2013;27(5):1503–8. Epub 2012/12/18.CrossRefPubMedGoogle Scholar
  4. 4.
    Andonian S, Okeke Z, Okeke DA, Rastinehad A, Vanderbrink BA, Richstone L, et al. Device failures associated with patient injuries during robot-assisted laparoscopic surgeries: a comprehensive review of FDA MAUDE database. Can J Urol. 2008;15(1):3912–6. Epub 2008/02/29.PubMedGoogle Scholar
  5. 5.
    Lucas SM, Pattison EA, Sundaram CP. Global robotic experience and the type of surgical system impact the types of robotic malfunctions and their clinical consequences: an FDA MAUDE review. BJU Int. 2012;109(8):1222–7; discussion 7. Epub 2011/11/03.CrossRefPubMedGoogle Scholar
  6. 6.
    Park SY, Ahn JJ, Jeong W, Ham WS, Rha KH. A unique instrumental malfunction during robotic prostatectomy. Yonsei Med J. 2010;51(1):148–50. Epub 2010/01/05.CrossRefPubMedGoogle Scholar
  7. 7.
    Park SY, Cho KS, Lee SW, Soh BH, Rha KH. Intraoperative breakage of needle driver jaw during robotic-assisted laparoscopic radical prostatectomy. Urology. 2008;71(1):168 e5–6. Epub 2008/02/05.CrossRefGoogle Scholar
  8. 8.
    Nayyar R, Gupta NP. Critical appraisal of technical problems with robotic urological surgery. BJU Int. 2010;105(12):1710–3. Epub 2009/10/31.CrossRefPubMedGoogle Scholar
  9. 9.
    Mendez-Probst CE, Vilos G, Fuller A, Fernandez A, Borg P, Galloway D, et al. Stray electrical currents in laparoscopic instruments used in da Vinci(R) robot-assisted surgery: an in vitro study. J Endourol. 2011;25(9):1513–7. Epub 2011/08/06.CrossRefPubMedGoogle Scholar
  10. 10.
    Lorenzo EI, Jeong W, Park S, Kim WT, Hong SJ, Rha KH. Iliac vein injury due to a damaged Hot Shears tip cover during robot assisted radical prostatectomy. Yonsei Med J. 2011;52(2):365–8. Epub 2011/02/15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mues AC, Box GN, Abaza R. Robotic instrument insulation failure: initial report of a potential source of patient injury. Urology. 2011;77(1):104–7. Epub 2010/09/18.CrossRefPubMedGoogle Scholar
  12. 12.
    Vilos G, Latendresse K, Gan BS. Electrophysical properties of electrosurgery and capacitive induced current. Am J Surg. 2001;182(3):222–5. Epub 2001/10/06.CrossRefPubMedGoogle Scholar
  13. 13.
    Yazdani A, Krause H. Laparoscopic instrument insulation failure: the hidden hazard. J Minim Invasive Gynecol. 2007;14(2):228–32. Epub 2007/03/21.CrossRefPubMedGoogle Scholar
  14. 14.
    Zorn KC, Gofrit ON, Orvieto MA, Mikhail AA, Galocy RM, Shalhav AL, et al. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies. J Endourol. 2007;21(11):1341–4. Epub 2007/11/29.CrossRefPubMedGoogle Scholar
  15. 15.
    Engebretsen SR, Huang GO, Wallner CL, Anderson KM, Schlaifer AE, Arnold Ii DC, et al. A prospective analysis of robotic tip cover accessory failure. J Endourol. 2013;27(7):914–7. Epub 2013/03/07.CrossRefPubMedGoogle Scholar
  16. 16.
    Administration USFaD. MAUDE – Manufacturer and User Facility Device Experience. 2011 [updated 30 June 2016 1 July 2016]; Available from:
  17. 17.
    Chandler JG, Corson SL, Way LW. Three spectra of laparoscopic entry access injuries. J Am Coll Surg. 2001;192(4):478–90; discussion 90–1. Epub 2001/04/11.CrossRefPubMedGoogle Scholar
  18. 18.
    Ostrzenski A. An intraoperative method of localizing a missing piece of a broken laparoscopic instrument. Am J Obstet Gynecol. 1997;176(3):726–7. Epub 1997/03/01.CrossRefPubMedGoogle Scholar
  19. 19.
    Selli C, Turri FM, Gabellieri C, Manassero F, De Maria M, Mogorovich A. Delayed-onset ureteral lesions due to thermal energy: an emerging condition. Arch Ital Urol Androl. 2014;86(2):152–3. Epub 2014/07/16.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of UrologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations