Advertisement

Simulation of Complications in the Animal Model

  • Oscar D. Martín
  • Jian Chen
  • Nathan Cheng
  • Andrew J. Hung
Chapter

Abstract

Robotic-assisted surgery has been rapidly popularized and become a major surgical technique. The increase in robotic surgery volume requires a solid training method for robotic surgeons. Here we provide a detailed review of the current trend in robotic surgical training method to avoid surgical complications.

Robotic surgical training can be divided into preclinical training phase and clinical exercise phase. During preclinical training phase, robotic console and instruments didactic introduction can establish trainee’s basic knowledge of the robotic surgery as a whole. This is usually followed by practicing robotic surgical skills in either dry laboratory or wet tissue laboratory environment. Virtual reality simulator is also an effective way of practicing before a surgeon enters into clinical arena. The clinical exercise usually starts with observation and assistance, then gradually obtaining basic and advanced surgical technique under the guidance of the proctor.

In this chapter, we also discuss the advantages and the disadvantages of the current robotic surgical training models and propose some new emerged robotic surgical training models.

Keywords

Robotic surgery Complications Training models Virtual reality simulator Inanimate exercises Wet tissue laboratories 

References

  1. 1.
    Sun AJ, Aron M, Hung AJ. Novel training methods for robotic surgery. Indian J Urol. 2014;30(3):333–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Clayman RV, Kavoussi LR, Figenshau RS, Chandhoke PS, Albala DM. Laparoscopic nephroureterectomy: initial clinical case report. J Laparoendosc Surg. 1991;1(6):343–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Koch MO. Robotic versus open prostatectomy: end of the controversy. J Urol. 2016;196(1):9–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Gurusamy KS, Aggarwal R, Palanivelu L, Davidson BR. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev. 2009;1:CD006575.Google Scholar
  5. 5.
    Gaba DM. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(Suppl 1):i2–10.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A systematic review of skills transfer after surgical simulation training. Ann Surg. 2008;248(2):166–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Kowalewski TM, Sweet R, Lendvay TS, Menhadji A, Averch T, Box G, et al. Validation of the AUA BLUS tasks. J Urol. 2016;195(4P1):998–1005.CrossRefPubMedGoogle Scholar
  8. 8.
    Ahmed K, Khan R, Mottrie A, Lovegrove C, Abaza R, Ahlawat R, et al. Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int. 2015;116(1):93–101.CrossRefPubMedGoogle Scholar
  9. 9.
    Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112(6):864–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Marecik SJ, Prasad LM, Park JJ, Jan A, Chaudhry V. Evaluation of midlevel and upper-level residents performing their first robotic-sutured intestinal anastomosis. Am J Surg. 2008;195(3):333–7. discussion 7-8CrossRefPubMedGoogle Scholar
  11. 11.
    Hung AJ, Ng CK, Patil MB, Zehnder P, Huang E, Aron M, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 2012;110(6):870–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Sotelo RJ, Astigueta JC, Carmona OJ, De Andrade RJ, Moreira OE. Chicken gizzard: a new training model for laparoscopic urethrovesical anastomosis. Actas Urol Esp. 2009;33(10):1083–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Cacciamani G, De Marco V, Siracusano S, De Marchi D, Bizzotto L, Cerruto MA, et al. A new training model for robot-assisted urethrovesical anastomosis and posterior muscle-fascial reconstruction: the Verona training technique. J Robot Surg. 2016;11(2):123–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Schreuder HW, Wolswijk R, Zweemer RP, Schijven MP, Verheijen RH. Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG. 2012;119(2):137–49.CrossRefPubMedGoogle Scholar
  15. 15.
    Eun D, Bhandari A, Boris R, Lyall K, Bhandari M, Menon M, et al. A novel technique for creating solid renal pseudotumors and renal vein-inferior vena caval pseudothrombus in a porcine and cadaveric model. J Urol. 2008;180(4):1510–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Korets R, Mues AC, Graversen JA, Gupta M, Benson MC, Cooper KL, et al. Validating the use of the mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78(6):1326–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee JY, Mucksavage P, Kerbl DC, Huynh VB, Etafy M, McDougall EM. Validation study of a virtual reality robotic simulator--role as an assessment tool? J Urol. 2012;187(3):998–1002.CrossRefPubMedGoogle Scholar
  19. 19.
    Lendvay TS, Casale P, Sweet R, Peters C. VR robotic surgery: randomized blinded study of the dV-trainer robotic simulator. Stud Health Technol Inform. 2008;132:242–4.PubMedGoogle Scholar
  20. 20.
    Liss MA, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, et al. Validation, correlation, and comparison of the da Vinci trainer() and the daVinci surgical skills simulator() using the mimic() software for urologic robotic surgical education. J Endourol/Endourol Soc. 2012;26(12):1629–34.CrossRefGoogle Scholar
  21. 21.
    Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J, Bresler L, et al. The virtual reality simulator dV-trainer(R) is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.CrossRefPubMedGoogle Scholar
  22. 22.
    Schreuder HW, Persson JE, Wolswijk RG, Ihse I, Schijven MP, Verheijen RH. Validation of a novel virtual reality simulator for robotic surgery. Sci World J. 2014;2014:507076.CrossRefGoogle Scholar
  23. 23.
    Lerner MA, Ayalew M, Peine WJ, Sundaram CP. Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol Soc. 2010;24(3):467–72.CrossRefGoogle Scholar
  24. 24.
    Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. Journal of endourology / Endourological Society. 2009;23(3):503–8.CrossRefGoogle Scholar
  25. 25.
    Kang SG, Ryu BJ, Yang KS, Ko YH, Cho S, Kang SH, et al. An effective repetitive training schedule to achieve skill proficiency using a novel robotic virtual reality simulator. J Surg Educ. 2015;72(3):369–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Kang SG, Cho S, Kang SH, Haidar AM, Samavedi S, Palmer KJ, et al. The tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84(2):345–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bric JD, Lumbard DC, Frelich MJ, Gould JC. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc. 2016;30(6):2169–78.CrossRefPubMedGoogle Scholar
  29. 29.
    Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. 2013;81(4):767–74.CrossRefPubMedGoogle Scholar
  30. 30.
    Raza SJ, Froghi S, Chowriappa A, Ahmed K, Field E, Stegemann AP, et al. Construct validation of the key components of Fundamental skills of robotic surgery (FSRS) curriculum--a multi-institution prospective study. J Surg Educ. 2014;71(3):316–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. 2010;76(2):357–60.CrossRefPubMedGoogle Scholar
  32. 32.
    Seixas-Mikelus SA, Stegemann AP, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, et al. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107(7):1130–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Chowriappa AJ, Shi Y, Raza SJ, Ahmed K, Stegemann A, Wilding G, et al. Development and validation of a composite scoring system for robot-assisted surgical training--the robotic skills assessment score. J Surg Res. 2013;185(2):561–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Alzahrani T, Haddad R, Alkhayal A, Delisle J, Drudi L, Gotlieb W, et al. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc J (J de l'Assoc des urologues du Can). 2013;7(7–8):E520–9.CrossRefGoogle Scholar
  35. 35.
    Connolly M, Seligman J, Kastenmeier A, Goldblatt M, Gould JC. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. 2014;28(5):1691–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Finnegan KT, Meraney AM, Staff I, Shichman SJ. Da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology. 2012;80(2):330–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Hung AJ, Zehnder P, Patil MB, Cai J, Ng CK, Aron M, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186(3):1019–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Kelly DC, Margules AC, Kundavaram CR, Narins H, Gomella LG, Trabulsi EJ, et al. Face, content, and construct validation of the da Vinci skills simulator. Urology. 2012;79(5):1068–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Lyons C, Goldfarb D, Jones SL, Badhiwala N, Miles B, Link R, et al. Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc. 2013;27(6):2020–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Culligan P, Gurshumov E, Lewis C, Priestley J, Komar J, Salamon C. Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg. 2014;20(1):48–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187(2):630–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Bric J, Connolly M, Kastenmeier A, Goldblatt M, Gould JC. Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc. 2014;28(12):3343–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang N, Sumer BD. Transoral robotic surgery: simulation-based standardized training. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1111–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Gomez PP, Willis RE, Van Sickle KR. Development of a virtual reality robotic surgical curriculum using the da Vinci Si surgical system. Surg Endosc. 2015;29(8):2171–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Vaccaro CM, Crisp CC, Fellner AN, Jackson C, Kleeman SD, Pavelka J. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial. Female Pelvic Med Reconstr Surg. 2013;19(5):266–70.CrossRefPubMedGoogle Scholar
  46. 46.
    Guzzo TJ, Gonzalgo ML. Robotic surgical training of the urologic oncologist. Urol Oncol. 2009;27(2):214–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Challacombe B, Wheatstone S. Telementoring and telerobotics in urological surgery. Curr Urol Rep. 2010;11(1):22–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Ericsson KA. Expertise. Curr Biol: CB. 2014;24(11):R508–10.CrossRefPubMedGoogle Scholar
  49. 49.
    Hmelo-Silver CE. Problem-based learning: what and how do students learn? Educ Psychol Rev. 2004;16(3):235–66.CrossRefGoogle Scholar
  50. 50.
    Volpe A, Ahmed K, Dasgupta P, Ficarra V, Novara G, van der Poel H, et al. Pilot validation study of the European Association of Urology robotic training curriculum. Eur Urol. 2015;68(2):292–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Oscar D. Martín
    • 1
  • Jian Chen
    • 2
  • Nathan Cheng
    • 3
  • Andrew J. Hung
    • 2
  1. 1.Clínica Cooperativa de Colombia, Universidad Cooperativa de ColombiaVillavicencioColombia
  2. 2.USC Norris Comprehensive Cancer CenterLos AngelesUSA
  3. 3.Keck School of Medicine of USCLos AngelesUSA

Personalised recommendations