Skip to main content

On the Geometry of the Domain of the Solution of Nonlinear Cauchy Problem

  • 1244 Accesses

Part of the UNIPA Springer Series book series (USS)

Abstract

We consider the Cauchy problem for a second order quasi-linear partial differential equation with an admissible parabolic degeneration such that the given functions described the initial conditions are defined on a closed interval. We study also a variant of the inverse problem of the Cauchy problem and prove that the considered inverse problem has a solution under certain regularity condition. We illustrate the Cauchy and the inverse problems in some interesting examples such that the families of the characteristic curves have either common envelopes or singular points. In these cases the definition domain of the solution of the differential equation contains a gap.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.A. Aleksandryan, The boundary problem of Dirichlet type for degenerative hyperbolic equations. Reports of Symposium in Continuum Mechanics and related problems of Analysis. Tbilisi (1971, in Russian)

    Google Scholar 

  2. G. Baghaturia, Nonlinear versions of hyperbolic problems for one quasi-linear equation of mixed type. J. Math. Sci. 208, 621–634 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Surveys in Applied Mathematics, vol. 3 (Wiley, New York; Chapman and Hall, London, 1958)

    Google Scholar 

  4. A.V. Bitsadze, Equations of Mixed Type (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  5. A.V. Bitsadze, Some Classes of Partial Differential Equations (Gordon and Breach Science, New York, 1988)

    MATH  Google Scholar 

  6. R. Bitsadze, On one version of the initial-characteristic Darboux problem for one equation of nonlinear oscillation. Reports of an Enlarged Session of the Seminar of I. Vekua Inst. Appl. Math. 8, 4–6 (1993)

    Google Scholar 

  7. R.G. Bitsadze, M. Menteshashvili, On one nonlinear analogue of the Darboux problem. Proc. A. Razmadze Math. Inst. 169, 9–21 (2015)

    MathSciNet  MATH  Google Scholar 

  8. J.K. Gvazava, On Some Classes of Quasi-Linear Equations of Mixed Type (Metsniereba, Tbilisi, 1981, in Russian)

    Google Scholar 

  9. J.K. Gvazava, Second-order nonlinear equations with complete characteristic systems and characteristic problems for them. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 87, 45–53 (1987, in Russian)

    Google Scholar 

  10. J.K. Gvazava, Nonlocal and initial problems for quasi-linear, non-strictly hyperbolic equations with general solutions represented by superposition of arbitrary functions. Georgian Math. J. 10, 687–707 (2003)

    MathSciNet  MATH  Google Scholar 

  11. J.K. Gvazava, The mean value property for nonstrictly hyperbolic second order quasilinear equations and the nonlocal problems. Proc. A. Razmadze Math. Inst. 135, 79–96 (2004)

    MathSciNet  MATH  Google Scholar 

  12. J.K. Gvazava, On one nonlinear version of the characteristic problem with a free support of data. Proc. A. Razmadze Math. Inst. 140, 91–107 (2006)

    MathSciNet  MATH  Google Scholar 

  13. J. Gvazava, M. Menteshashvili, G. Baghaturia, Cauchy problem for a quasi-linear hyperbolic equation with closed support of data. J. Math. Sci. 193, 364–368 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. J. Hadamard, Leçons sur la propagation dés ondes et les équations de l’hydrodinamique (Hermann, Paris, 1903)

    MATH  Google Scholar 

  15. M. Klebanskaya, Some nonlinear versions of Darboux and Goursat problems for a hyperbolic equation with parabolic degeneracy, in International Symposium on Differential Equations and Mathematical Physics dedicated to the 90th Birthday Anniversary of Academician I. Vekua, Tbilisi, 21–25 June 1997

    Google Scholar 

  16. M.Z. Menteshashvili, On the Cauchy problem on the unit circumference for a degenerating quasi-linear equation. Soobsh. Akad. Nauk Gruzii 148, 190–193 (1993, in Russian)

    Google Scholar 

  17. G. Monge, Second mémoire sur le calcul integral de quelques équations aux differences partilelles. Mem. R. Accad. Sci. Turin, années 5, 79–122 (1770–1773)

    Google Scholar 

  18. P.J. Olver, Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107 (Springer, Berlin, 1993)

    Google Scholar 

  19. I.Yu. Popov, Stratified flow in an electric field, the Schrödinger Equation, and the operator extension theory model. Theor. Math. Phys. 103, 535–542 (1995)

    CrossRef  MATH  Google Scholar 

  20. L.I. Sedov, Problems in the Plane in Hydrodynamics and Aerodynamics (Gastekhizdat, Moscow-Leningrad, 1950)

    Google Scholar 

  21. S.L. Sobolev, On mixed problems for partial differential equations with two independent variables. Dokl. Akad. Nauk SSSR, 122, 555–558 (1958, in Russian)

    Google Scholar 

  22. F. Tricomi, Beispiel einer Strömung mit Durchgang durch die Schallgeschwindigkeit. Monatshefte Math. 58, 160–171 (1954)

    CrossRef  MATH  Google Scholar 

  23. F. Tricomi, Lectures on Partial Equations, Moscow, 1957

    Google Scholar 

  24. N. Vakhania, On a boundary problem with the prescription on the whole boundary for the hyperbolic system equivalent to the vibrating string equation. Dokl. Akad. Nauk SSSR, 116, 906–909 (1957, in Russian)

    Google Scholar 

  25. L. Wolfersdorf, Zum Problem der Richtungsableitung für die Tricomi-Gleichung. Math. Nachr. 25, 111–127 (1963)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors were supported by the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreements no. 317721, no. 318202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Figula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Figula, Á., Menteshashvili, M.Z. (2017). On the Geometry of the Domain of the Solution of Nonlinear Cauchy Problem. In: Falcone, G. (eds) Lie Groups, Differential Equations, and Geometry. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62181-4_9

Download citation