Skip to main content

Invariant Control Systems on Lie Groups

  • Chapter
  • First Online:
  • 1343 Accesses

Part of the book series: UNIPA Springer Series ((USS))

Abstract

This is a survey of our research (conducted over the last few years) on invariant control systems, the associated optimal control problems, and the associated Hamilton–Poisson systems. The focus is on equivalence and classification. State space and detached feedback equivalence of control systems are characterized in simple algebraic terms; several classes of systems (in three dimensions, on the Heisenberg groups, and on the six-dimensional orthogonal group) are classified. Equivalence of cost-extended systems is shown to imply equivalence of the associated Hamilton–Poisson systems. Cost-extended systems of a certain kind are reinterpreted as invariant sub-Riemannian structures. A classification of quadratic Hamilton–Poisson systems in three dimensions is presented. As an illustrative example, the stability and integration of a typical system is investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.M. Adams, R. Biggs, W. Holderbaum, C.C. Remsing, Stability and integration of Hamilton-Poisson systems on so(3). Rend. Mat. Appl. 37(1–2), 1–42 (2016)

    MathSciNet  Google Scholar 

  2. R.M. Adams, R. Biggs, C.C. Remsing, Equivalence of control systems on the Euclidean group SE(2). Control Cybern. 41(3), 513–524 (2012)

    MathSciNet  MATH  Google Scholar 

  3. R.M. Adams, R. Biggs, C.C. Remsing, On the equivalence of control systems on the orthogonal group SO(4), in Recent Researches in Automatic Control, Systems Science and Communications, Porto, 2012, ed. by H.R. Karimi (WSEAS Press, 2012), pp. 54–59. ISBN: 978-1-61804-103-6

    Google Scholar 

  4. R.M. Adams, R. Biggs, C.C. Remsing, Single-input control systems on the Euclidean group SE (2). Eur. J. Pure Appl. Math. 5(1), 1–15 (2012)

    MathSciNet  MATH  Google Scholar 

  5. R.M. Adams, R. Biggs, C.C. Remsing, Control systems on the orthogonal group SO (4). Commun. Math. 21(2), 107–128 (2013)

    MathSciNet  MATH  Google Scholar 

  6. R.M. Adams, R. Biggs, C.C. Remsing, On some quadratic Hamilton-Poisson systems. Appl. Sci. 15, 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  7. R.M. Adams, R. Biggs, C.C. Remsing, Two-input control systems on the Euclidean group SE (2). ESAIM Control Optim. Calc. Var. 19(4), 947–975 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. R.M. Adams, R. Biggs, C.C. Remsing, Quadratic Hamilton-Poisson systems on \(\,\mathfrak{s}\mathfrak{o}_{-}^{{\ast}}(3)\): classifications and integration, in Proceedings of the 15th International Conference on Geometry, Integrability and Quantization, Varna, 2013, ed. by I.M. Mladenov, A. Ludu, A. Yoshioka (Bulgarian Academy of Sciences, Sofia, 2014), pp. 55–66

    Google Scholar 

  9. A. Agrachev, D. Barilari, Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18(1), 21–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.A. Agrachev, Y.L. Sachkov, Control Theory from the Geometric Viewpoint (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  11. J.V. Armitage, W.F. Eberlein, Elliptic Functions (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  12. A. Aron, C. Pop, Quadratic and homogeneous Hamilton-Poisson systems on the 13th Lie algebra from Bianchi’s classification, in Proceedings of the International Conference of Differential Geometry and Dynamical Systems, Bucharest, 2009, vol. 17 (Geometry Balkan Press, Bucharest 2010), pp. 12–20

    MATH  Google Scholar 

  13. A. Aron, C. Dăniasă, M. Puta, Quadratic and homogeneous Hamilton-Poisson system on (so(3)). Int. J. Geom. Methods Mod. Phys. 4(7), 1173–1186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Aron, C. Pop, M. Puta, Some remarks on \((\mathrm{sl}(2, \mathbb{R}))\) and Kahan’s integrator. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53(Suppl. 1), 49–60 (2007)

    Google Scholar 

  15. A. Aron, M. Craioveanu, C. Pop, M. Puta, Quadratic and homogeneous Hamilton-Poisson systems on A 3,6,−1 . Balkan J. Geom. Appl. 15(1), 1–7 (2010)

    MathSciNet  MATH  Google Scholar 

  16. D.I. Barrett, R. Biggs, C.C. Remsing, Quadratic Hamilton-Poisson systems on \(\,\mathfrak{s}\mathfrak{e}\,(1,1)_{-}^{{\ast}}\): the inhomogeneous case. Preprint

    Google Scholar 

  17. D.I. Barrett, R. Biggs, C.C. Remsing, Affine subspaces of the Lie algebra \(\,\mathfrak{s}\mathfrak{e}\,(1,1)\). Eur. J. Pure Appl. Math. 7(2), 140–155 (2014)

    MathSciNet  Google Scholar 

  18. D.I. Barrett, R. Biggs, C.C. Remsing, Optimal control of drift-free invariant control systems on the group of motions of the Minkowski plane, in Proceedings of the 13th European Control Conference, Strasbourg, 2014 (European Control Association, 2014), pp. 2466–2471. doi:10.1109/ECC.2014.6862313

    Google Scholar 

  19. D.I. Barrett, R. Biggs, C.C. Remsing, Affine distributions on a four-dimensional extension of the semi-Euclidean group. Note Mat. 35(2), 81–97 (2015)

    MathSciNet  MATH  Google Scholar 

  20. D.I. Barrett, R. Biggs, C.C. Remsing, Quadratic Hamilton-Poisson systems on \(\,\mathfrak{s}\mathfrak{e}\,(1,1)^{{\ast}}\): the homogeneous case. Int. J. Geom. Methods Mod. Phys. 12, 1550011 (17 pp.) (2015)

    Google Scholar 

  21. C.E. Bartlett, R. Biggs, C.C. Remsing, Control systems on the Heisenberg group: equivalence and classification. Publ. Math. Debr. 88(1–2), 217–234 (2016)

    Article  MathSciNet  Google Scholar 

  22. J. Biggs, W. Holderbaum, Planning rigid body motions using elastic curves. Math. Control Signals Syst. 20(4), 351–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Biggs, W. Holderbaum, Integrable quadratic Hamiltonians on the Euclidean group of motions. J. Dyn. Control Syst. 16(3), 301–317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Biggs, P.T. Nagy, A classification of sub-Riemannian structures on the Heisenberg groups. Acta Polytech. Hungar. 10(7), 41–52 (2013)

    Google Scholar 

  25. R. Biggs, C.C. Remsing, A category of control systems. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 20(1), 355–367 (2012)

    Google Scholar 

  26. R. Biggs, C.C. Remsing, A note on the affine subspaces of three-dimensional Lie algebras. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2012(3), 45–52 (2012)

    MathSciNet  MATH  Google Scholar 

  27. R. Biggs, C.C. Remsing, On the equivalence of cost-extended control systems on Lie groups, in Recent Researches in Automatic Control, Systems Science and Communications, Porto, 2012, ed. by H.R. Karimi (WSEAS Press, 2012), pp. 60–65. ISBN: 978-1-61804-103-6

    Google Scholar 

  28. R. Biggs, C.C. Remsing, Control affine systems on solvable three-dimensional Lie groups, I. Arch. Math. (Brno) 49(3), 187–197 (2013)

    Google Scholar 

  29. R. Biggs, C.C. Remsing, Control affine systems on solvable three-dimensional Lie groups, II. Note Mat. 33(2), 19–31 (2013)

    MathSciNet  MATH  Google Scholar 

  30. R. Biggs, C.C. Remsing, Control affine systems on semisimple three-dimensional Lie groups. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 59(2), 399–414 (2013)

    Google Scholar 

  31. R. Biggs, C.C. Remsing, Feedback classification of invariant control systems on three-dimensional Lie groups, in Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems, Toulouse (2013), pp. 506–511

    Google Scholar 

  32. R. Biggs, C.C. Remsing, A classification of quadratic Hamilton-Poisson systems in three dimensions, in Proceedings of the 15th International Conference on Geometry, Integrability and Quantization, Varna, 2013, ed. by I.M. Mladenov, A. Ludu, A. Yoshioka (Bulgarian Academy of Sciences, Sofia, 2014), pp. 67–78

    Google Scholar 

  33. R. Biggs, C.C. Remsing, Control systems on three-dimensional Lie groups: equivalence and controllability. J. Dyn. Control Syst. 20(3), 307–339 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Biggs, C.C. Remsing, Control systems on three-dimensional Lie groups, in Proceedings of the 13th European Control Conference, Strasbourg, 2014 (European Control Association, 2014), pp. 2442–2447. doi:10.1109/ECC.2014.6862312

    Google Scholar 

  35. R. Biggs, C.C. Remsing, Cost-extended control systems on Lie groups. Mediterr. J. Math. 11(1), 193–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Biggs, C.C. Remsing, Some remarks on the oscillator group. Differ. Geom. Appl. 35(Suppl.), 199–209 (2014)

    Google Scholar 

  37. R. Biggs, C.C. Remsing, Subspaces of the real four-dimensional Lie algebras: a classification of subalgebras, ideals, and full-rank subspaces. Extracta Math. 31(1), 41–93 (2015)

    MathSciNet  MATH  Google Scholar 

  38. R. Biggs, C.C. Remsing, On the equivalence of control systems on Lie groups. Commun. Math. 23(2), 119–129 (2015)

    MathSciNet  MATH  Google Scholar 

  39. R. Biggs, C.C. Remsing, Equivalence of control systems on the pseudo-orthogonal group SO (2, 1). An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 24(2), 45–65 (2016)

    Google Scholar 

  40. A.M. Bloch, Nonholonomic Mechanics and Control (Springer, New York, 2003)

    Book  Google Scholar 

  41. A.M. Bloch, P.E. Crouch, N. Nordkvist, A.K. Sanyal, Embedded geodesic problems and optimal control for matrix Lie groups. J. Geom. Mech. 3(2), 197–223 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Bonnard, V. Jurdjevic, I. Kupka, G. Sallet, Transitivity of families of invariant vector fields on the semidirect products of Lie groups. Trans. Am. Math. Soc. 271(2), 525–535 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.W. Brockett, System theory on group manifolds and coset spaces. SIAM J. Control 10(2), 265–284 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Capogna, E. Le Donne, Smoothness of subRiemannian isometries. Am. J. Math. 138(5), 1439–1454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. J.N. Clelland, C.G. Moseley, G.R. Wilkens, Geometry of control-affine systems. SIGMA Symmetry Integrability Geom. Methods Appl. 5(Paper 095), 28 (2009)

    Google Scholar 

  46. J.N. Clelland, C.G. Moseley, G.R. Wilkens, Geometry of optimal control for control-affine systems. SIGMA Symmetry Integrability Geom. Methods Appl. 9(Paper 034), 31 (2013)

    Google Scholar 

  47. M. Craioveanu, C. Pop, A. Aron, C. Petrişor, An optimal control problem on the special Euclidean group \(\mathsf{SE}(3, \mathbb{R})\), in International Conference of Differential Geometry and Dynamical Systems, Bucharest, 2009, vol. 17 (Geometry Balkan Press, Sofia, 2010), pp. 68–78

    Google Scholar 

  48. D. D’Alessandro, M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Autom. Control 46(6), 866–876 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Dăniasă, A. Gîrban, R.M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on \((\mathfrak{s}\mathfrak{o}(3))^{{\ast}}\). Int. J. Geom. Methods Mod. Phys. 8(8), 1695–1721 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. V.I. Elkin, Affine control systems: their equivalence, classification, quotient systems, and subsystems. J. Math. Sci. 88(5), 675–721 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. R.V. Gamkrelidze, Discovery of the maximum principle. J. Dyn. Control Syst. 5(4), 437–451 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. R.B. Gardner, W.F. Shadwick, Feedback equivalence of control systems. Syst. Control Lett. 8(5), 463–465 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. V.V. Gorbatsevich, A.L. Onishchik, E.B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups (Springer, Berlin, 1997)

    MATH  Google Scholar 

  54. S. Goyal, N.C. Perkins, C.L. Lee, Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables. J. Comput. Phys. 209(1), 371–389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. K.Y. Ha, J.B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282(6), 868–898 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics. IEEE Trans. Autom. Control 32(3), 819–850 (1990)

    MATH  Google Scholar 

  57. A. Harvey, Automorphisms of the Bianchi model Lie groups. J. Math. Phys. 20(2), 251–253 (1979)

    Article  MathSciNet  Google Scholar 

  58. J. Hilgert, K.-H. Neeb, Structure and Geometry of Lie Groups (Springer, New York, 2012)

    Book  MATH  Google Scholar 

  59. D.D. Holm, Geometric Mechanics. Part I: Dynamics and Symmetry (Imperial College Press, London, 2008)

    Google Scholar 

  60. D.D. Holm, Geometric Mechanics. Part II: Rotating, Translating and Rolling, 2nd edn. (Imperial College Press, London, 2011)

    Google Scholar 

  61. B. Jakubczyk, Equivalence and invariants of nonlinear control systems, in Nonlinear Controllability and Optimal Control, ed. by H.J. Sussmann (Dekker, New York, 1990), pp. 177–218

    Google Scholar 

  62. B. Jakubczyk, W. Respondek, On linearization of control systems. Bull. Acad. Polon. Sci. Sér. Sci. Math. 28(9–10), 517–522 (1980)

    MathSciNet  MATH  Google Scholar 

  63. V. Jurdjevic, The geometry of the plate-ball problem. Arch. Ration. Mech. Anal. 124(4), 305–328 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  64. V. Jurdjevic, Geometric Control Theory (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  65. V. Jurdjevic, Integrable Hamiltonian systems on Lie groups: Kowalewski type. Ann. Math. 150(2), 605–644 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. V. Jurdjevic, Optimal control on Lie groups and integrable Hamiltonian systems. Regul. Chaotic Dyn. 16(5), 514–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. V. Jurdjevic, F. Monroy-Pérez, Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops, and constrained geodesic problems, in Contemporary Trends in Nonlinear Geometric Control Theory and its Applications, México City, 2000 (World Scientific, River Edge, NJ, 2002), pp. 3–51

    MATH  Google Scholar 

  68. V. Jurdjevic, H.J. Sussmann, Control systems on Lie groups. J. Differ. Equ. 12, 313–329 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  69. V. Jurdjevic, J. Zimmerman, Rolling sphere problems on spaces of constant curvature. Math. Proc. Camb. Philos. Soc. 144(3), 729–747 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  70. I. Kishimoto, Geodesics and isometries of Carnot groups. J. Math. Kyoto Univ. 43(3), 509–522 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Krasiński, C.G. Behr, E. Schücking, F.B. Estabrook, H.D. Wahlquist, G.F.R. Ellis, R. Jantzen, W. Kundt, The Bianchi classification in the Schücking-Behr approach. Gen. Relativ. Gravit. 35(3), 475–489 (2003)

    Article  MATH  Google Scholar 

  72. A.J. Krener, On the equivalence of control systems and linearization of nonlinear systems. SIAM J. Control 11, 670–676 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  73. C. Laurent-Gengoux, A. Pichereau, P. Vanhaecke, Poisson Structures (Springer, Heidelberg, 2013)

    Book  MATH  Google Scholar 

  74. J. Lauret, Modified H-type groups and symmetric-like Riemannian spaces. Differ. Geom. Appl. 10(2), 121–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  75. D.F. Lawden, Elliptic Functions and Applications (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  76. E. Le Donne, A. Ottazzi, Isometries of Carnot groups and subFinsler homogeneous manifolds. J. Geom. Anal. 26(1), 330–345 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  77. N.E. Leonard, P.S. Krishnaprasad, Motion control of drift-free, left-invariant systems on Lie groups. IEEE Trans. Automat. Control 40, 1539–1554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  78. M.A.H. MacCallum, On the classification of the real four-dimensional Lie algebras, in On Einstein’s Path, New York, 1996 (Springer, New York, 1999), pp. 299–317

    MATH  Google Scholar 

  79. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edn. (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  80. C. Meyer, Matrix Analysis and Applied Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000)

    Book  Google Scholar 

  81. F. Monroy-Pérez, A. Anzaldo-Meneses, Optimal control on the Heisenberg group. J. Dyn. Control Syst. 5(4), 473–499 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  82. G.M. Mubarakzyanov, On solvable Lie algebras. Izv. Vysš. Učehn. Zaved. Matematika 1(32), 114–123 (1963)

    MATH  Google Scholar 

  83. P.T. Nagy, M. Puta, Drift Lee-free left invariant control systems on \(\mathrm{SL}(2, \mathbb{R})\) with fewer controls than state variables. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 44(92)(1), 3–11 (2001)

    Google Scholar 

  84. A.L. Onishchik, E.B. Vinberg, Lie Groups and Lie Algebras, III (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  85. J.-P. Ortega, V. Planas-Bielsa, T.S. Ratiu, Asymptotic and Lyapunov stability of constrained and Poisson equilibria. J. Differ. Equ. 214(1), 92–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  86. J. Patera, R.T. Sharp, P. Winternitz, H. Zassenhaus, Invariants of real low dimension Lie algebras. J. Math. Phys. 17(6), 986–994 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  87. R.O. Popovych, V.M. Boyko, M.O. Nesterenko, M.W. Lutfullin, Realizations of real low-dimensional Lie algebras. J. Phys. A 36(26), 7337–7360 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  88. M. Puta, Stability and control in spacecraft dynamics. J. Lie Theory 7(2), 269–278 (1997)

    MathSciNet  MATH  Google Scholar 

  89. M. Puta, Optimal control problems on matrix Lie groups, in New Developments in Differential Geometry, ed. by J. Szenthe (Kluwer, Dordrecht, 1999), pp. 361–373

    Google Scholar 

  90. W. Respondek, I.A. Tall, Feedback equivalence of nonlinear control systems: a survey on formal approach, in Chaos in Automatic Control (Control Engineering) (CRC, Taylor & Francis, Boca Raton, 2006), pp. 137–262

    MATH  Google Scholar 

  91. L. Saal, The automorphism group of a Lie algebra of Heisenberg type. Rend. Sem. Mat. Univ. Politec. Torino 54(2), 101–113 (1996)

    MathSciNet  MATH  Google Scholar 

  92. Y.L. Sachkov, Conjugate points in the Euler elastic problem. J. Dyn. Control Syst. 14(3), 409–439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  93. Y.L. Sachkov, Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst. 14(2), 169–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  94. Y.L. Sachkov, Control theory on Lie groups. J. Math. Sci. 156(3), 381–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  95. H.J. Sussmann, An extension of a theorem of Nagano on transitive Lie algebras. Proc. Am. Math. Soc. 45(3), 349–356 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  96. H.J. Sussmann, Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, ed. by Brockett, R.W., Millman, R.S., Sussmann, H.J. (Birkhäuser, Boston, MA, 1983), pp. 1–116

    Google Scholar 

  97. R.M. Tudoran, The free rigid body dynamics: generalized versus classic. J. Math. Phys. 54(7), 072704, 10 (2013)

    Google Scholar 

  98. R.M. Tudoran, R.A. Tudoran, On a large class of three-dimensional Hamiltonian systems. J. Math. Phys. 50(1), 012703, 9 (2009)

    Google Scholar 

  99. A.M. Vershik, V.Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems, in Dynamical Systems VII, ed. by V.I. Arnol’d, S.P. Novikov (Springer, Berlin, 1994), pp. 1–81

    Google Scholar 

  100. G.C. Walsh, R. Montgomery, S.S. Sastry, Optimal path planning on matrix Lie groups, in Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista (1994), pp. 1258–1263

    Google Scholar 

  101. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

  102. E.N. Wilson, Isometry groups on homogeneous nilmanifolds. Geom. Dedicata 12(3), 337–346 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 317721. Also, Rory Biggs would like to acknowledge the financial assistance of the Claude Leon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory Biggs .

Editor information

Editors and Affiliations

Appendix: Three-Dimensional Lie Algebras and Groups

Appendix: Three-Dimensional Lie Algebras and Groups

There are eleven types of three-dimensional real Lie algebras; in fact, nine algebras and two parametrized infinite families of algebras (see, e.g., [71, 78, 82]). In terms of an (appropriate) ordered basis \(\,\left (E_{1},E_{2},E_{3}\right )\), the commutation operation is given by

$$ \displaystyle\begin{array}{rcl} [E_{2},E_{3}]& =& n_{1}E_{1} - aE_{2} {}\\{} [E_{3},E_{1}]& =& aE_{1} + n_{2}E_{2} {}\\{} [E_{1},E_{2}]& =& n_{3}E_{3}. {}\\ \end{array} $$

The structure parameters a, n 1, n 2, n 3 for each type are given in Table 7.1.

A classification of the three-dimensional (real connected) Lie groups can be found in [84]. Let G be a three-dimensional (real connected) Lie group with Lie algebra \(\,\mathfrak{g}\).

  1. 1.

    If \(\,\mathfrak{g}\,\) is Abelian, i.e., \(\,\mathfrak{g}\cong 3\mathfrak{g}_{1}\), then G is isomorphic to \(\,\mathbb{R}^{3}\), \(\,\mathbb{R}^{2} \times \mathbb{T}\), \(\,\mathbb{R} \times \mathbb{T}\), or \(\,\mathbb{T}^{3}\).

  2. 2.

    If \(\,\mathfrak{g}\cong \mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1}\), then G is isomorphic to \(\,\mathsf{Aff}\,(\mathbb{R})_{0} \times \mathbb{R}\,\) or \(\,\mathsf{Aff}\,(\mathbb{R})_{0} \times \mathbb{T}\).

  3. 3.

    If \(\,\mathfrak{g}\cong \mathfrak{g}_{3.1}\), then G is isomorphic to the Heisenberg group H 3 or the Lie group \(\,\mathsf{H}_{3}^{{\ast}} = \mathsf{H}_{3}/\mathop{\mathrm{Z}}\nolimits (\mathsf{H}_{3}(\mathbb{Z}))\), where \(\,\mathop{\mathrm{Z}}\nolimits (\mathsf{H}_{3}(\mathbb{Z}))\,\) is the group of integer points in the centre \(\,\mathop{\mathrm{Z}}\nolimits (\mathsf{H}_{3})\cong \mathbb{R}\,\) of H 3.

  4. 4.

    If \(\,\mathfrak{g}\cong \mathfrak{g}_{3.2}\), \(\,\mathfrak{g}_{3.3}\,\), \(\,\mathfrak{g}_{3.4}^{0}\), \(\,\mathfrak{g}_{3.4}^{a}\), or \(\,\mathfrak{g}_{3.5}^{a}\), then G is isomorphic to the simply connected Lie group G 3. 2, G 3. 3, G 3. 4 0 = SE (1, 1), G 3. 4 a, or G 3. 5 a, respectively. (The centres of these groups are trivial.)

  5. 5.

    If \(\,\mathfrak{g}\cong \mathfrak{g}_{3.5}^{0}\), then G is isomorphic to the Euclidean group SE (2), the n-fold covering SE n (2) of SE 1(2) = SE (2), or the universal covering group \(\,\widetilde{\mathsf{SE}}\,(2)\).

  6. 6.

    If \(\,\mathfrak{g}\cong \mathfrak{g}_{3.6}\), then G is isomorphic to the pseudo-orthogonal group SO (2, 1)0, the n-fold covering A n  of SO (2, 1)0, or the universal covering group \(\,\widetilde{\mathsf{A}}\). Here \(\,\mathsf{A}_{2}\cong \mathsf{SL}\,(2, \mathbb{R})\).

  7. 7.

    If \(\,\mathfrak{g}\cong \mathfrak{g}_{3.7}\), then G is isomorphic to either the unitary group SU (2) or the orthogonal group SO (3).

Among these Lie groups, only H 3 , A n , \(n\geqslant 3\), and \(\,\widetilde{\mathsf{A}}\,\) are not matrix Lie groups.

7.1.1 Matrix Representations for Solvable Groups

We have the following parametrizations of the solvable three-dimensional matrix Lie groups and their Lie algebras. (We omit the Abelian groups.)

An appropriate ordered basis for the Lie algebra in each case is given by setting (x, y, z) = (1, 0, 0) for E 1, (x, y, z) = (0, 1, 0) for E 2, and (x, y, z) = (0, 0, 1) for  E 3.

7.1.2 Matrix Representations for Semisimple Groups

7.1.2.1 Matrix Lie Groups with Algebra \(\,\mathfrak{g}_{3.6}\)

There are only two connected matrix Lie groups with Lie algebra \(\,\mathfrak{g}_{3.6}\), namely the pseudo-orthogonal group SO (2, 1)0 and the special linear group \(\,\mathsf{SL}\,(2, \mathbb{R})\); \(\,\mathsf{SL}\,(2, \mathbb{R})\,\) is a double cover of SO (2, 1)0.

The pseudo-orthogonal group

$$\displaystyle{\mathsf{SO}\,(2,1) =\{ g \in \mathbb{R}^{3\times 3}\,:\, g^{\top }Jg = J,\,\det g = 1\}}$$

has two connected components. Here \(\,J = \mathop{\mathrm{diag}}\nolimits (1,1,-1)\). The identity component of SO (2, 1) is \(\,\mathsf{SO}\,(2,1)_{0} = \left \{g \in \mathsf{SO}\,(2,1)\,:\, g_{33}> 0\right \}\,\) where \(\,g = \left [\begin{array}{*{10}c} g_{ij} \end{array} \right ]\,\)(for gSO (2, 1)). Its Lie algebra is given by

$$\displaystyle\begin{array}{rcl} \mathfrak{s}\mathfrak{o}\,(2,1)& =& \{A \in \mathbb{R}^{3\times 3}\,:\, A^{\top }J + JA = 0\} {}\\ & =& \left \{\left [\begin{array}{*{10}c} 0 & z &y \\ -z& 0 &x\\ y &x & 0 \end{array} \right ]\,:\, x,y,z \in \mathbb{R}\right \}.{}\\ \end{array}$$

On the other hand, the special linear group is given by

$$\displaystyle{\mathsf{SL}\,(2, \mathbb{R}) =\{ g \in \mathbb{R}^{2\times 2}\,:\,\det g = 1\}.}$$

Its Lie algebra is given by

$$\displaystyle{\mathfrak{s}\mathfrak{l}\,(2, \mathbb{R}) = \left \{\left [\begin{array}{*{10}c} \frac{x} {2} & \frac{y-z} {2} \\ \frac{y+z} {2} & -\frac{x} {2} \end{array} \right ]\,:\, x,y,z \in \mathbb{R}\right \}.}$$

7.1.2.2 Matrix Lie Groups with Algebra \(\,\mathfrak{g}_{3.7}\)

There are exactly two connected Lie groups with Lie algebra \(\,\mathfrak{g}_{3.7}\); both are matrix Lie groups. The special unitary group and its Lie algebra are given by

$$\displaystyle\begin{array}{rcl} \mathsf{SU}\,(2)& =& \left \{g \in \mathbb{C}^{2\times 2}\,:\, gg^{\dag } = \mathbf{1},\,\det g = 1\right \} {}\\ \mathfrak{s}\mathfrak{u}\,(2)& =& \left \{\left [\begin{array}{*{10}c} \frac{i} {2}x & \frac{1} {2}(iz + y) \\ \frac{1} {2}(iz - y)& -\frac{i} {2}x \end{array} \right ]\,:\, x,y,z \in \mathbb{R}\right \}{}\\ \end{array}$$

SU (2) is a double cover of the orthogonal group SO (3). The orthogonal group SO (3) and its Lie algebra are given by

$$\displaystyle\begin{array}{rcl} \mathsf{SO}\,(3)& =& \left \{g \in \mathbb{R}^{3\times 3}\,:\, gg^{\top } = \mathbf{1},\,\det g = 1\right \} {}\\ \mathfrak{s}\mathfrak{o}\,(3)& =& \left \{\left [\begin{array}{*{10}c} 0 &-z& y \\ z & 0 &-x\\ -y & x & 0 \end{array} \right ]\,:\, x,y,z \in \mathbb{R}\right \}.{}\\ \end{array}$$

5493

Note 6

Again, an appropriate ordered basis for the Lie algebra in each case is given by setting (x, y, z) = (1, 0, 0) for E 1, (x, y, z) = (0, 1, 0) for E 2, and (x, y, z) = (0, 0, 1) for E 3.

7.1.3 Automorphism Groups

A standard computation yields the automorphism group for each three-dimensional Lie algebra (see, e.g., [57]). With respect to the given ordered basis (E 1, E 2, E 3) , the automorphism group of each solvable Lie algebra has parametrization:

$$\displaystyle\begin{array}{rcl} \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.1})\;&:& \;\left [\begin{array}{*{10}c} yw - vz&x& u \\ 0 & y & v \\ 0 & z &w\\ \end{array} \right ]\qquad \qquad \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1})\;:\; \left [\begin{array}{*{10}c} x&y &u\\ y &x & v \\ 0 & 0 & 1\\ \end{array} \right ] {}\\ \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.2})\;&:& \;\left [\begin{array}{*{10}c} u&x&y \\ 0 &u&z\\ 0 & 0 & 1\\ \end{array} \right ]\qquad \qquad \qquad \qquad \quad \,\,\,\mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.3})\;:\; \left [\begin{array}{*{10}c} x&y& z\\ u & v &w \\ 0 &0& 1\\ \end{array} \right ] {}\\ \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.4}^{0})\;&:& \;\left [\begin{array}{*{10}c} x&y &u\\ y &x & v \\ 0 & 0 & 1\\ \end{array} \right ],\left [\begin{array}{*{10}c} x & y & u \\ -y&-x& v \\ 0 & 0 &-1\\ \end{array} \right ]\qquad \quad \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.4}^{a})\;:\; \left [\begin{array}{*{10}c} x&y &u\\ y &x & v \\ 0 & 0 & 1\\ \end{array} \right ] {}\\ \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.5}^{0}))\;&:& \;\left [\begin{array}{*{10}c} x &y &u\\ -y &x & v \\ 0 & 0 & 1\\ \end{array} \right ],\left [\begin{array}{*{10}c} x& y & u \\ y &-x& v \\ 0 & 0 &-1\\ \end{array} \right ]\qquad \quad \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.5}^{a})\;:\; \left [\begin{array}{*{10}c} x &y &u\\ -y &x & v \\ 0 & 0 & 1\\ \end{array} \right ]{}\\ \end{array}$$

For the semisimple Lie algebras, we have

$$\displaystyle{\mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.6}) = \mathsf{SO}\,(2,1)\qquad \text{and}\qquad \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g}_{3.7}) = \mathsf{SO}\,(3).}$$

In several cases, for a connected Lie group G, we wish to find the subgroup of linearized group automorphisms \(\,d\mathop{\mathsf{Aut}}\nolimits (\mathsf{G}) =\{ T_{\mathbf{1}}\phi \,:\,\phi \in \mathop{\mathsf{Aut}}\nolimits (\mathsf{G})\}\leqslant \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g})\). If G is simply connected, then \(\,d\mathop{\mathsf{Aut}}\nolimits (\mathsf{G}) = \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g})\). If G is not simply connected, then the subgroup \(\,d\mathop{\mathsf{Aut}}\nolimits (\mathsf{G})\,\) may be determined by use of the following result.

Proposition 5 (cf. [58])

Let  G be a connected Lie group with Lie algebra \(\,\mathfrak{g}\,\) and let \(\,q:\widetilde{ \mathsf{G}} \rightarrow \mathsf{G}\) be a universal covering. If \(\,\psi \in \mathop{\mathsf{Aut}}\nolimits (\mathfrak{g})\), then \(\,\psi \in d\,\mathop{\mathsf{Aut}}\nolimits (\mathsf{G})\,\) if and only if ϕ(kerq) = kerq, where \(\,\phi \in \mathop{\mathsf{Aut}}\nolimits (\widetilde{\mathsf{G}})\,\) is the unique automorphism such that T 1 ϕ = (T 1 q)−1 ⋅ ψ ⋅ T 1 q.

7.1.4 Casimir Functions for Lie–Poisson Spaces

An exhaustive list of Casimir functions (not necessarily globally defined), for low-dimensional Lie algebras, was obtained by Patera et al. [86]. For each three-dimensional Lie–Poisson space \(\,\mathfrak{g}_{-}^{{\ast}}\,\) (associated to the three-dimensional Lie algebra \(\,\mathfrak{g}\)) we exhibit its Casimir function:

$$\displaystyle\begin{array}{rcl} \mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1}\;&:& \;C(\,p) = p_{3}\qquad \qquad \quad \,\,\,\mathfrak{g}_{3.1}\;:\; C(\,p) = p_{1} {}\\ \mathfrak{g}_{3.2}\;&:& \;C(\,p) = p_{1}e^{\frac{p_{2}} {p_{1}} }\qquad \qquad \mathfrak{g}_{3.3}\;:\; C(\,p) = \frac{p_{2}} {p_{1}} {}\\ \mathfrak{g}_{3.4}^{0}\;&:& \;C(\,p) = p_{ 1}^{2} - p_{ 2}^{2}\qquad \,\,\,\,\mathfrak{g}_{ 3.4}^{\alpha }{}_{ 1\neq \alpha>0}\;:\; C(\,p) = \frac{\tfrac{1} {2}p_{1} + \tfrac{1} {2}p_{2}} {(\pm \tfrac{1} {2}p_{1} \mp \tfrac{1} {2}p_{2})^{\frac{\alpha -1} {\alpha +1} }} {}\\ \mathfrak{g}_{3.5}^{0}\;&:& \;C(\,p) = p_{ 1}^{2} + p_{ 2}^{2}\qquad \qquad \mathfrak{g}_{ 3.5}^{\alpha }{}_{ \alpha>0}\;:\; C(\,p) = (\,p_{1}^{2} + p_{ 2}^{2})\left (\frac{p_{1} - ip_{2}} {p_{1} + ip_{2}}\right )^{i\alpha } {}\\ \mathfrak{g}_{3.6}\;&:& \;C(\,p) = p_{1}^{2} + p_{ 2}^{2} - p_{ 3}^{2}\qquad \mathfrak{g}_{ 3.7}\;:\; C(\,p) = p_{1}^{2} + p_{ 2}^{2} + p_{ 3}^{2}. {}\\ \end{array}$$

On the trivial Lie–Poisson space \(\,(3\mathfrak{g}_{1})_{-}^{{\ast}}\), every function is a Casimir function. Here \(\,p \in \mathfrak{g}^{{\ast}}\,\) is written in coordinates as p = p 1 E 1 + p 2 E 2 + p 3 E 3  where (E 1 , E 2 , E 3 ) is the dual of the ordered basis (E 1, E 2, E 3). Note that only \(\,3\mathfrak{g}_{1}\), \(\,\mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1}\), \(\,\mathfrak{g}_{3.1}\), \(\,\mathfrak{g}_{3.4}^{0}\), \(\,\mathfrak{g}_{3.5}^{0}\), \(\,\mathfrak{g}_{3.6}\), and \(\,\mathfrak{g}_{3.7}\,\) admit globally defined Casimir functions.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biggs, R., Remsing, C.C. (2017). Invariant Control Systems on Lie Groups. In: Falcone, G. (eds) Lie Groups, Differential Equations, and Geometry. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62181-4_7

Download citation

Publish with us

Policies and ethics