Advertisement

The BCH-Formula and Order Conditions for Splitting Methods

  • Winfried Auzinger
  • Wolfgang HerfortEmail author
  • Othmar Koch
  • Mechthild Thalhammer
Chapter
Part of the UNIPA Springer Series book series (USS)

Abstract

As an application of the BCH-formula, order conditions for splitting schemes are derived. The same conditions can be obtained by using non-commutative power series techniques and inspecting the coefficients of Lyndon–Shirshov words.

Notes

Acknowledgements

Wolfgang Herfort is indebted to UNIPA for generous support in June 2016.

He also would like to thank the Department of Mathematics at the Brigham Young University for the great hospitality during the year 2015. Special thanks to Jim Logan for his excellent support during this time with hard- and software.

Othmar Koch acknowledges the support by the Vienna Science and Technology Fund (WWTF) under the grant MA14-002.

References

  1. 1.
    W. Auzinger, W. Herfort, Local error structures and order conditions in terms of Lie elements for exponential splitting schemes. Opuscula Math. 34(2), 243–255 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    W. Auzinger, O. Koch, M. Thalhammer, Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher order methods for linear problems. J. Comput. Appl. Math. 255, 384–403 (2013)Google Scholar
  3. 3.
    W. Auzinger, H. Hofstätter, D. Ketcheson, O. Koch, Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: construction of optimized schemes and pairs of schemes. BIT Numer. Math. Published online: 28 July, 2016. http://dx.doi.org/10.1007/s10543-016-0626-9
  4. 4.
    S. Blanes, F. Casas, On the convergence and optimization of the Baker–Campbell–Hausdorff formula. Linear Algebra Appl. 378, 135–158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. Blanes, P.C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)Google Scholar
  6. 6.
    S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)Google Scholar
  7. 7.
    S. Blanes, F. Casas, P. Chartier, A. Murua, Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82, 1559–1576 (2013)Google Scholar
  8. 8.
    L. Bokut, L. Sbitneva, I. Shestakov, Lyndon–Shirshov words, Gröbner-Shirshov bases, and free Lie algebras, in Non-associative Algebra and its Applications, Chap. 3 (Chapman & Hall/CRC, Boca Raton, FL, 2006)Google Scholar
  9. 9.
    P. Chartier, A. Murua, An algebraic theory of order. M2AN Math. Model. Numer. Anal. 43, 607–630 (2009)Google Scholar
  10. 10.
    J.-P. Duval, Géneration d’une section des classes de conjugaison et arbre des mots de Lyndon de longueur bornée. Theor. Comput. Sci. 60, 255–283 (1988)CrossRefzbMATHGoogle Scholar
  11. 11.
    W. Gröbner, Die Liereihen und ihre Anwendungen, 2nd edn. (VEB Deutscher Verlag der Wissenschaften, Berlin, 1967)zbMATHGoogle Scholar
  12. 12.
    E. Hairer, C. Lubich, G. Wanner, Geometrical Numerical Integration – Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. (Springer, Berlin, 2006)zbMATHGoogle Scholar
  13. 13.
    E. Hansen, A. Ostermann, Exponential splitting for unbounded operators. Math. Comput. 78, 1485–1496 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. McLachlan, R. Quispel, Splitting methods. Acta Numer. 11, 341–434 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic integrators. Phys. Lett. A 165, 387–395 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46, 2022–2038 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Z. Tsuboi, M. Suzuki, Determining equations for higher-order decompositions of exponential operators. Int. J. Mod. Phys. B 9, 3241–3268 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Winfried Auzinger
    • 1
  • Wolfgang Herfort
    • 1
    Email author
  • Othmar Koch
    • 2
  • Mechthild Thalhammer
    • 3
  1. 1.Technische Universität WienViennaAustria
  2. 2.Fakultät für MathematikUniversität WienViennaAustria
  3. 3.Institut für Mathematik, Universität InnsbruckInnsbruckAustria

Personalised recommendations