Skip to main content

Character, Multiplicity, and Decomposition Problems in the Representation Theory of Complex Lie Algebras

  • Chapter
  • First Online:
  • 1345 Accesses

Part of the book series: UNIPA Springer Series ((USS))

Abstract

This essay is meant as an introduction to a very successful approach towards understanding the structure of certain highest weight categories appearing in algebraic Lie theory. For simplicity, the focus lies on the case of the category \(\mathcal{O}\) of representations of a simple complex Lie algebra. We show how the approach yields a proof of the classical Kazhdan–Lusztig conjectures that avoids the theory of D-modules on flag varieties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To be precise, one should replace \(\mathfrak{g}\) here by its Langlands dual \(\mathfrak{g}^{\vee }\).

References

  1. H.H. Andersen, J.C. Jantzen, W. Soergel, Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p. Astérisque 220, 321 (1994)

    MathSciNet  MATH  Google Scholar 

  2. A. Beilinson, J. Bernstein, Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I 292, 15–18 (1981)

    MathSciNet  MATH  Google Scholar 

  3. T. Braden, R. MacPherson, From moment graphs to intersection cohomology. Math. Ann. 321(3), 533–551 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-L. Brylinski, M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64, 387–410 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Elias, G. Williamson, The Hodge theory of Soergel bimodules. Ann. Math. (2) 180(3), 1089–1136 (2014)

    Google Scholar 

  6. P. Fiebig, Centers and translation functors for category \(\mathcal{O}\) over Kac-Moody algebras. Math. Z. 243(4), 689–717 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Fiebig, The combinatorics of category \(\mathcal{O}\) over symmetrizable Kac-Moody algebras. Transform. Groups 11(1), 29–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Fiebig, Sheaves on moment graphs and a localization of Verma flags. Adv. Math. 217, 683–712 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Fiebig, The combinatorics of Coxeter categories. Trans. Am. Math. Soc. 360, 4211–4233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Fiebig, Sheaves on affine Schubert varieties, modular representations and Lusztig’s conjecture. J. Am. Math. Soc. 24, 133–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Fiebig, Moment graphs in representation theory and geometry (2013, preprint). arXiv:1308.2873

    Google Scholar 

  12. J.E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  13. J.E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \(\mathcal{O}\). Graduate Studies in Mathematics, vol. 94 (American Mathematical Society, Providence, RI, 2008)

    Google Scholar 

  14. J.C. Jantzen, Moduln mit einem höchsten Gewicht. Lecture Notes in Mathematics, vol. 750 (Springer, New York, 1979)

    Google Scholar 

  15. D. Juteau, C. Mautner, G. Williamson, Parity sheaves. J. Am. Math. Soc. 27(4), 1169–1212 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, in Geometry of the Laplace operator (Proceedings of Symposia in Pure Mathematics) (University of Hawaii, Honolulu, 1979), pp. 185–203

    Google Scholar 

  18. W. Soergel, On the relation between intersection cohomology and representation theory in positive characteristic. J. Pure Appl. Algebra 152(1–3), 311–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Soergel, Kategorie \(\mathcal{O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3(2), 421–445 (1990)

    MATH  Google Scholar 

  20. W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen. J. Inst. Math. Jussieu 6(3), 501–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Williamson; with a joint appendix with Alex Kontorovich and Peter J. McNamara. Schubert calculus and torsion explosion. J. Am. Math. Soc. 30, 1023–1046 (2017)

    Google Scholar 

Download references

Acknowledgements

The author was partially supported by the DFG grant SP1388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fiebig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fiebig, P. (2017). Character, Multiplicity, and Decomposition Problems in the Representation Theory of Complex Lie Algebras. In: Falcone, G. (eds) Lie Groups, Differential Equations, and Geometry. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62181-4_3

Download citation

Publish with us

Policies and ethics