Remarks on Infinite-Dimensional Representations of the Heisenberg Algebra

  • Camillo TrapaniEmail author
Part of the UNIPA Springer Series book series (USS)


Infinite-dimensional representations of Lie algebras necessarily invoke the theory of unbounded operator algebras. Starting with the familiar example of the Heisenberg Lie algebra, we sketch the essential features of this interaction, distinguishing in particular the cases of integrable and nonintegrable representations. While integrable representations are well understood, nonintegrable representations are quite mysterious objects. We present here a short and didactical-minded overview of the subject.


  1. 1.
    J.-P. Antoine, C. Trapani, Partial Inner Product Spaces: Theory and Applications. Springer Lecture Notes in Mathematics, vol. 1986 (Berlin, Heidelberg, 2009)Google Scholar
  2. 2.
    J.-P. Antoine, A. Inoue, C. Trapani, Partial *-Algebras and Their Operator Realizations (Kluwer, Dordrecht, 2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    A. Arai, Generalized weak Weyl relation and decay of quantum dynamics. Rep. Math. Phys. 17, 1071–1109 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    F. Bagarello, Pseudo-bosons, Riesz bases and coherent states. J. Math. Phys. 50, 023531 (2010) (10 pp.). doi:10.1063/1.3300804Google Scholar
  5. 5.
    F. Bagarello, Examples of Pseudo-bosons in quantum mechanics. Phys. Lett. A 374, 3823–3827 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F. Bagarello, Pseudo-bosons, so far. Rep. Math. Phys. 68, 175–210 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. Bagarello, A. Inoue, C. Trapani, Weak commutation relations of unbounded operators and applications. J. Math. Phys. 52, 113508 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    F. Bagarello, A. Inoue, C. Trapani, Weak commutation relations of unbounded operators: nonlinear extensions. J. Math. Phys. 53, 123510 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A.O. Barut, R. Racza, Theory of Group Representations and Applications (PWN, Warszawa, 1980)Google Scholar
  10. 10.
    H.D. Doebner, O. Melsheimer, Limitable dynamical groups in quantum mechanics. J. Math. Phys. 9, 1638–1656 (1968)CrossRefzbMATHGoogle Scholar
  11. 11.
    B. Fuglede, On the relation PQPQ = −iI. Math. Scand. 20, 79–88 (1967)Google Scholar
  12. 12.
    L. Gårding, Note on continuous representations of Lie groups. Proc. Natl. Acad. Sci. U.S.A. 33, 331–332 (1947)MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Gårding, Vecteurs analytiques dans les répresentations des groupes de Lie. Bull. Soc. Math. France 88, 73–93 (1970)Google Scholar
  14. 14.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. I (American Mathematical Society, Providence, 1997)zbMATHGoogle Scholar
  15. 15.
    E. Nelson, Analytic vectors. Ann. Math. 70, 572–615 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. Functional Analysis, vol. I (Academic, San Diego, 1980)Google Scholar
  17. 17.
    K. Schmüdgen, On the Heisenberg commutation relations I. J. Funct. Anal. 50, 8–49 (1983)MathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Schmüdgen, On the Heisenberg commutation relations II. Publ. RIMS, Kyoto Univ. 19, 601–671 (1983)Google Scholar
  19. 19.
    K. Schmüdgen, Unbounded Operator Algebras and Representation Theory (Birkhäuser-Verlag, Basel, 1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaPalermoItaly

Personalised recommendations