Advertisement

Reduction of Some Semi-discrete Schemes for an Evolutionary Equation to Two-Layer Schemes and Estimates for the Approximate Solution Error

  • Jemal Rogava
  • David GuluaEmail author
  • Romeo Galdava
Chapter
Part of the UNIPA Springer Series book series (USS)

Abstract

In the paper, using the perturbation algorithm, purely implicit three-layer and four-layer semi-discrete schemes for an abstract evolutionary equation are reduced to two-layer schemes. The solutions of these two-layer schemes are used to construct an approximate solution of the initial problem. By using the associated polynomials the estimates for the approximate solution error are proved.

Notes

Acknowledgements

J. Rogava and D. Gulua were supported by the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 317721.

References

  1. 1.
    E. Rothe, Über die Wärmeleitungsgleichung mit nichtkonstanten Koeffizienten im räumlichen Falle. Math. Ann. 104(1), 340–354 (1931)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G.I. Marchuk, V.I. Agoshkov, Introduction to Projection-Grid Methods (Nauka, Moscow, 1981)zbMATHGoogle Scholar
  3. 3.
    S.G. Mikhlin, Numerical Realization of Variational Methods. With an appendix by T.N. Smirnova (Izdat. Nauka, Moscow, 1966)Google Scholar
  4. 4.
    G. Streng, J. Fiks, in Theory of the Finite Element Method, ed. by G.I. Marchuk. Translated from the English by V.I. Agoshkov, V.A. Vasilenko, and V.V. Shaǐdurov (Izdat. Mir, Moscow, 1977)Google Scholar
  5. 5.
    S.K. Godunov, V.S. Ryabenki, Difference Schemes (Nauka, Moscow, 1973)zbMATHGoogle Scholar
  6. 6.
    G.I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1977)Google Scholar
  7. 7.
    R. Richtmayer, K. Morton, Difference Methods of Solution of Initial-Value Problems (Mir, Moscow, 1972)Google Scholar
  8. 8.
    A.A. Samarskiǐ, Theory of Difference Schemes (Nauka, Moscow, 1977)zbMATHGoogle Scholar
  9. 9.
    N.N. Ianenko, A Method of Fractional Steps of Solution of Multi-Dimensional Problems of Mathematical Physics (Nauka, Novosibirsk, 1967)Google Scholar
  10. 10.
    M. Crouzeix, Une methode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35(3), 257–276 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Crouzeix, P.-A. Raviart, Approximation des équations d’évolution linéaires par des méthodes à pas multiples. C. R. Acad. Sci. Paris 283, A367–A370 (1976)zbMATHGoogle Scholar
  12. 12.
    M.-N. Le Roux, Semidiscretization in time for parabolic problems. Math. Comput. 33(147), 919–931 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    V.I. Agoshkov, D.V. Gulua, A perturbation algorithm for realization of finite-dimensional realization problems. Comput. Math. Dept. USSR Acad. Sci., Moscow, 35 pp. (1990). Preprint 253Google Scholar
  14. 14.
    G.I. Marchuk, V.I. Agoshkov, V.P. Shutyaev, Adjoint Equations and Perturbation Methods in Nonlinear Problems of Mathematical Physics (VO Nauka, Moscow, 1993)zbMATHGoogle Scholar
  15. 15.
    J.L. Rogava, D.V. Gulua, Perturbation algorithm for implementing a finite-difference approximation to an abstract evolutionary problem and explicit error estimation of its solution. Dokl. Math. 89(3), 335–337 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J.L. Rogava, D.V. Gulua, Reduction of a three-laver semi-discrete scheme for an abstract parabolic equation to two-layer schemes. Explicit estimates for the approximate solution error. J. Math. Sci. 206(4), 424–444 (2015)zbMATHGoogle Scholar
  17. 17.
    J.L. Rogava, Semidiscrete Schemes for Operator Differential Equations (Technical University Press, Tbilisi, 1995)Google Scholar
  18. 18.
    G.I. Marchuk, V.V. Shaǐdurov, Difference Methods and Their Extrapolations (Springer, Berlin, 1983)CrossRefzbMATHGoogle Scholar
  19. 19.
    V. Pereyra, On improving an approximate solution of a functional equation by deferred corrections. Numer. Math. 8(3), 376–391 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    V. Pereyra, Accelerating the convergence of discretization algorithms. SIAM J. Numer. Anal. 4, 508–533 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    T. Kato, in Perturbation Theory for Linear Operators, ed. by V.P. Maslov. Translated from the English by G.A. Voropaeva, A.M. Stepin and I.A. Sismarev (Izdat. Mir, Moscow, 1972)Google Scholar
  22. 22.
    L.V. Kantorovich, G.P. Akilov, Functional Analysis (VO Nauka, Moscow, 1977)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.I. Vekua Institute of Applied MathematicsIv. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Georgian Technical UniversityTbilisiGeorgia
  3. 3.Sokhumi State UniversityTbilisiGeorgia

Personalised recommendations