Skip to main content

Technologies for Millimeter-Wave Power Amplifiers

  • Chapter
  • First Online:
Millimeter-Wave Power Amplifiers

Part of the book series: Signals and Communication Technology ((SCT))

  • 1175 Accesses

Abstract

In the last few decades, semiconductor technology has steadily grown in maturity, with silicon transistors able to reach increasingly higher unity-gain frequency (\( f_{ \hbox{max} } \)) values. This has proven to be true for technologies based on both CMOS and SiGe BiCMOS. Higher \( f_{ \hbox{max} } \) values in turn lead to transistors that are suitable for highly complex integrated circuits operating in millimeter-wave bands. The large performance gains observed in signal processing and other digital circuits based on silicon technologies serve as an excellent motivator for the continued advancement of such technologies, particularly CMOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doan, C.H., Emami, S., Niknejad, A.M., Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–154 (2005)

    Article  Google Scholar 

  2. Harame, D.L., Member, S., Ahlgren, D.C.: Current status and future trends of SiGe BiCMOS technology. IEEE Trans. Electron Devices 48(11), 2575–2594 (2001)

    Article  Google Scholar 

  3. Cressler, J.D., Niu, G.: Silicon-Germanium heterojunction bipolar transistors. Artech House, Inc., Norwood (2003)

    Google Scholar 

  4. Neamen, D.A.: Microelectronics: Circuit Analysis and Design, 4th ed. McGraw-Hill, New York (2010)

    Google Scholar 

  5. Gonzalez, G.: Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  6. Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York (2003)

    Google Scholar 

  7. Hu, C.C.: Modern Semiconductor Devices for Integrated Circuits. Pearson Education, Inc., Upper Saddle River (2009)

    Google Scholar 

  8. Cressler, J.D.: SiGe HBT technology: a new contender for Si-Based RF and microwave circuit applications. IEEE Trans. Microw. Theory Tech. 46(5), 572–589 (1998)

    Article  Google Scholar 

  9. Harame, D., Larson, L., Case, M.: SiGe HBT technology: device and application issues. IEEE Trans. Electron Devices 914, 731–734 (1995)

    Google Scholar 

  10. Pawlak, A., Lehmann, S., Sakalas, P., Krause, J., Aufinger, K., Ardouin, B., Schroter, M.: SiGe HBT modeling for mm-wave circuit design. In: Proceedings of IEEE Bipolar/BiCMOS Circuits Technology Meeting, vol. 2015–Nov, pp. 149–156 (2015)

    Google Scholar 

  11. Hashemi, H., Raman, S. (eds.): mm-Wave Silicon Power Amplifiers and Transmitters. Cambridge University Press, Cambridge, United Kingdom (2016)

    Google Scholar 

  12. Ghazinour, A., Wennekers, P., Reuter, R., Yi, Y., Li, H., Böhm, T., Jahn, D.: An integrated SiGe-BiCMOS low noise transmitter chip with a frequency divider chain for 77 GHz applications. In: Proceedings of the 1st European Microwave Integrated Circuits Conference (EuMIC), pp. 194–197 (2006)

    Google Scholar 

  13. Winkler, W., Borngraber, J., Gustat, H., Korndorfer, F.: 60 GHz transceiver circuits in SiGe: C BiCMOS technology. In: Proceedings of the 30th European Solid-State Circuits Conference, pp. 83–86 (2004)

    Google Scholar 

  14. Harame, D.L., Comfort, J.H., Crabb, E.F., Sun, J.Y.C., Meyerson, B.S., Cressler, J.D., Tice, T.: Si/SiGe epitaxial-base transistors—part i: materials, physics, and circuits. IEEE Trans. Electron Devices 42(3), 455–468 (1995)

    Article  Google Scholar 

  15. Rieh, J.S., Jagannathan, B., Chen, H., Schonenberg, K.T., Angell, D., Chinthakindi, A., Florkey, J., Golan, F., Greenberg, D., Jeng, S.J., Khater, M., Pagette, F., Schnabel, C., Smith, P., Stricker, A., Vaed, K., Volant, R., Ahlgren, D., Freeman, G., Stein, K., Subbanna, S.: SiGe HBTs with cut-off frequency of 350 GHz. In: International Electron Devices Meeting, pp. 771–774 (2002)

    Google Scholar 

  16. Sarmah, N., Grzyb, J., Statnikov, K., Malz, S., Rodriguez Vazquez, P., Föerster, W., Heinemann, B., Pfeiffer, U.R.: A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans. Microw. Theory Tech. 64(2), 562–574 (2016)

    Article  Google Scholar 

  17. Statnikov, K., Grzyb, J., Heinemann, B., Pfeiffer, U.R.: 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Trans. Microw. Theory Tech. 63(2), 520–532 (2015)

    Article  Google Scholar 

  18. Chai, F.K., Reuter, R., Baker, T., Zupac, D., Kirchgessner, J.: Outstanding noise characteristics of SiGe: C HBT allow flexibility in high-frequency RF designs. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 151–154 (2003)

    Google Scholar 

  19. Niu, G., Cressler, J.D., Zhang, S., Joseph, A., Harame, D.: Noise-gain tradeoff in RF SiGe HBTs. In: Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), vol. 2, no. 6, pp. 187–191 (2001)

    Google Scholar 

  20. Niu, G.: Noise in SiGe HBT RF technology: physics, modeling, and circuit implications. Proc. IEEE 93(9), 1583–1597 (2005)

    Article  Google Scholar 

  21. d’Alessandro, V., Sasso, G., Rinaldi, N., Aufinger, K.: Experimental DC extraction of the base resistance of bipolar transistors: application to SiGe: C HBTs. IEEE Trans. Electron Devices 63(7), 1–9 (2016)

    Article  Google Scholar 

  22. Van Haaren, B., Régis, M., Llopis, O., Escotte, L., Grüble, A., Mähner, C., Plana, R., Graffeuil, J.: Low-frequency noise properties of SiGe HBT’s and application to ultra-low phase-noise oscillators. IEEE Trans. Microw. Theory Tech., 46(5)PART 2, 647–652 (1998)

    Google Scholar 

  23. Vempati, L.S., Cressler, J.D., Babcock, J.A., Jaeger, R.C., Harame, D.L.: Low-frequency noise in UHV/CVD epitaxial Si and SiGe bipolar transistors. IEEE J. Solid-State Circuits 31(10), 1458–1466 (1996)

    Article  Google Scholar 

  24. Borgarino, M., Bary, L., Vescovi, D., Menozzi, R., Monroy, A., Laurens, M., Plana, R., Fantini, F., Graffeuil, J., Member, S.: The correlation resistance for low-frequency noise compact modeling of Si/SiGe HBTs. IEEE Trans. Electron Devices 49(5), 863–870 (2002)

    Article  Google Scholar 

  25. Bruce, S.P.O.: Measurement of low-frequency base and collector current noise and coherence in SiGe heterojunction bipolar transistors using transimpedance amplifiers. IEEE Trans. Electron Devices 46(5), 993–1000 (1999)

    Article  Google Scholar 

  26. Rodwell, M.J.W., Urteaga, M., Mathew, T., Scott, D., Mensa, D., Lee, Q., Guthrie, J., Betser, Y., Martin, S.C., Smith, R.P., Jaganathan, S., Krishnan, S., Long, S.I., Pullela, R., Agarwal, B., Bhattacharya, U., Samoska, L., Dahlstrom, M.: Submicron scaling of HBTs. IEEE Trans. Electron Devices 48(11), 2606–2624 (2001)

    Article  Google Scholar 

  27. Harame, D.L., Comfort, J.H., Crabb, E.F., Sun, J.Y.C., Meyerson, B.S., Cressler, J.D., Tice, T.: Si/SiGe epitaxial-base transistors part II: process integration and analog applications. IEEE Trans. Electron Devices 42(3), 469–482 (1995)

    Article  Google Scholar 

  28. Cheng, P., Liu, Q., Camillo-Castillo, R., Liedy, B., Adkisson, J., Pekarik, J., Gray, P., Kaszuba, P., Moszkowicz, L., Zetterlund, B., MacHa, K., Tallman, K., Khater, M., Harame, D., A novel Ccb and Rb reduction technique for high-speed SiGe HBTs. In: Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 8–11 (2012)

    Google Scholar 

  29. Camillo-Castillo, R.A., Liu, Q.Z., Adkisson, J.W., Khater, M.H., Gray, P.B., Jain, V., Leidy, R.K., Pekarik, J.J., Gambino, J.P., Zetterlund, B., Willets, C., Parrish, C., Engelmann, S.U., Pyzyna, A.M., Cheng, P., Harame, D.L.: SiGe HBTs in 90 nm BiCMOS technology demonstrating 300/420 GHz fT/fMAX through reduced Rb and Ccb parasitic. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp. 227–230 (2013)

    Google Scholar 

  30. Enz, C.: A MOS transistor model for RF IC design valid in all regions of operation. IEEE Trans. Microw. Theory Tech. 50(1), 342–359 (2002)

    Article  Google Scholar 

  31. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–287 (2001)

    Article  Google Scholar 

  32. Taur, Y., Buchanan, D.A., Chen, W., Frank, D.J., Ismail, K.E., Shih-Hsien, L.O., Sai-Halasz, G.A., Viswanathan, R.G., Wann, H.J.C., Wind, S.J., Wong, H.S.: CMOS scaling into the nanometer regime. Proc. IEEE 85(4), 486–503 (1997)

    Article  Google Scholar 

  33. Wicks, B.N., Skafidas, E., Evans, R.J.: A 75–95 GHz wideband CMOS power amplifier. European Microwave Integrated Circuits Conference, pp. 554–557, Oct 2008

    Google Scholar 

  34. Mitomo, T., Ono, N., Hoshino, H., Yoshihara, Y., Watanabe, O., Seto, I.: A 77 GHz 90 nm CMOS transceiver for FMCW radar applications. IEEE J. Solid-State Circuits 45(4), 928–937 (2010)

    Article  Google Scholar 

  35. Fritsche, D., Tretter, G., Carta, C., Ellinger, F.: Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS. IEEE Trans. Microw. Theory Tech. 63(6), 1910–1922 (2015)

    Article  Google Scholar 

  36. Heydari, B., Bohsali, M., Adabi, E., Niknejad, A.M.: A 60 GHz power amplifier in 90 nm CMOS technology. In: IEEE Custom Integrated Circuits Conference, no. Cicc, pp. 769–772 (2007)

    Google Scholar 

  37. Makunda, B.D.: Millimeter-wave performance of ultrasubmicrometer—gate field-effect transistors: a comparison of MODFET, MESFET and PBT structures. IEEE Trans. Electron Devices, ED-34(7), 1429–1440 (1987)

    Google Scholar 

  38. Tasker, P.J., Hughes, B.: Importance of source and drain resistance to the maximum fT of millimeter-wave MODFET’s. IEEE Electron Device Lett. 10(7), 291–293 (1989)

    Article  Google Scholar 

  39. Niknejad, A.M., Hashemi, H.: Mm-Wave Silicon Technology: 60 GHz and Beyond. Springer, US, New York (2008)

    Book  Google Scholar 

  40. Shigematsu, H., Hirose, T., Brewer, F., Rodwell, M.: Millimeter-wave CMOS circuit design. IEEE Trans. Microw. Theory Tech. 53(2), 472–477 (2005)

    Article  Google Scholar 

  41. Razavi, B.: Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. I Regul. Pap. 56(1), 4–16 (2009)

    Article  MathSciNet  Google Scholar 

  42. Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011)

    Article  Google Scholar 

  43. Johnson, E.: Physical limitations on frequency and power parameters of transistors. IRE Int. Conv. Rec. 13, 27–34 (1965)

    Article  Google Scholar 

  44. Mimura, T.: The early history of the high electron mobility transistor (HEMT). IEEE Trans. Microw. Theory Tech. 50(3), 780–782 (2002)

    Article  Google Scholar 

  45. Brehm, G.E.: Trends in microwave/millimeter-wave front-end technology. In: 1st European Microwave Integrated Circuits Conference (IEEE Cat. No.06EX1410), no. Sep, 4 pp. |CD-pp.ROM (2006)

    Google Scholar 

  46. Tang, Y., Shinohara, K., Regan, D., Corrion, A., Brown, D., Wong, J., Schmitz, A., Fung, H., Kim, S., Micovic, M.: Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett. 36(6), 549–551 (2015)

    Article  Google Scholar 

  47. Mishra, B.U.K., Shen, L., Kazior, T.E., Wu, Y.: GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)

    Article  Google Scholar 

  48. Shinohara, K., Regan, D., Corrion, A., Brown, D., Burnham, S., Willadsen, P.J., Alvarado-Rodriguez, I., Cunningham, M., Butler, C., Schmitz, A., Kim, S., Holden, B., Chang, D., Lee, V., Ohoka, A., Asbeck, P.M., Micovic, M.: Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency. In: International Electron Devices Meeting (IEDM), vol. 2, pp. 453–456 (2011)

    Google Scholar 

  49. Shinohara, K., Regan, D.C., Tang, Y., Corrion, A.L., Brown, D.F., Wong, J.C., Robinson, J.F., Fung, H.H., Schmitz, A., Oh, T.C., Kim, S.J., Chen, P.S., Nagele, R.G., Margomenos, A.D., Micovic, M.: Scaling of GaN HEMTs and schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Devices 60(10), 2982–2996 (2013)

    Article  Google Scholar 

  50. Corrion, A.L., Shinohara, K., Regan, D., Milosavljevic, I., Hashimoto, P., Willadsen, P.J., Schmitz, A., Wheeler, D.C., Butler, C.M., Brown, D., Burnham, S.D., Micovic, M.: Enhancement-mode AlN/GaN/AlGaN DHFET with 700-mS/mm gm and 112-GHz fT. IEEE Electron Device Lett. 31(10), 1116–1118 (2010)

    Article  Google Scholar 

  51. Gunnarsson, S.E., Kärnfelt, C., Zirath, H., Kozhuharov, R., Kuylenstierna, D., Fager, C., Alping, A.: Single-chip 60 GHz transmitter and receiver MMICs in a GaAs mHEMT technology. In: IEEE MTT-S International Microwave Symposium Digest, vol. 40, no. 11, pp. 801–804 (2006)

    Google Scholar 

  52. Curtis, J., Pham, A.-V., Chirala, M., Aryanfar, F., Pi, Z.: A Ka-Band doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 349–352 (2013)

    Google Scholar 

  53. Alizadeh, A., Frounchi, M., Medi, A.: On design of wideband compact-size Ka/Q-band high-power amplifier. IEEE Trans. Microw. Theory Tech. 64(6), 1831–1842 (2016)

    Article  Google Scholar 

  54. Chen, Y.C., Ingram, D.L., Lai, R., Barsky, M., Grunbacher, R., Block, T., Yen, H.C., Streit, D.C.: A 95-GHz InP HEMT MMIC amplifier with 427-mW power output. IEEE Microw. Guid. Wave Lett. 8(11), 399–401 (1998)

    Article  Google Scholar 

  55. Haydl, W.H., Verweyen, L., Jakobus, T., Neumann, M., Tessmann, A., Krems, T., Schlechtweg, M., Reinert, W., Massier, H., Rudiger, J., Bronner,W., Hulsmann, A., Fink, T.: Compact monolithic coplanar 94 GHz front ends. In: IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1281–1284 (1997)

    Google Scholar 

  56. Chirala, M.K., Nguyen, C.: Multilayer design techniques for extremely miniaturized CMOS microwave and millimeter-wave distributed passive circuits. IEEE Trans. Microw. Theory Tech. 54(12), 4218–4224 (2006)

    Article  Google Scholar 

  57. Long, J.R., Zhao, Y., Wu, W., Spirito, M., Vera, L., Gordon, E.: Passive circuit technologies for mm-wave wireless systems on silicon. In: IEEE Trans. Circuits Syst. I Regul. Pap., 59(8), 1680–1693 (2012)

    Google Scholar 

  58. Shi, J., Kang, K., Xiong, Y.Z., Brinkhoff, J., Lin, F., Yuan, X.J.: Millimeter-wave passives in 45-nm digital CMOS. IEEE Electron Device Lett. 31(10), 1080–1082 (2010)

    Article  Google Scholar 

  59. Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Inc., Hoboken (2012)

    Google Scholar 

  60. Yue, C.P., Wong, S.S.: On-chip spiral inductors with patterned ground shields for Si-based RF IC’s. IEEE J. Solid-State Circuits 33(5), 743–752 (1998)

    Article  Google Scholar 

  61. Lim, K., Pinel, S., Davis, M., Sutono, A., Lee, C.H., Heo, D., Obatoyinbo, A., Laskar, J., Tantzeris, E.M., Tummala, R.: RF-System-On-Package (SOP) for wireless communications. IEEE Microw. Mag. 3(1), 88–99 (2002)

    Article  Google Scholar 

  62. Kondratyev, V., Lahti, M., Jaakola, T.: On the design of LTCC filter for millimeter-waves. In: IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1771–1774 (2003)

    Google Scholar 

  63. Rong, Y., Zaki, K.A., Hageman, M., Stevens, D., Gipprich, J.: Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters. IEEE Trans. Microw. Theory Tech. 47(12), 2317–2324 (1999)

    Article  Google Scholar 

  64. Lee, J.H., DeJean, G., Sarkar, S., Pinel, S., Lim, K., Papapolymerou, J., Laskar, J., Tentzeris, M.M.: Highly integrated millimeter-wave passive components using 3-D LTCC System-on-Package (SOP) technology. In: IEEE Trans. Microw. Theory Tech., 53(6)II, 2220–2229 (2005)

    Google Scholar 

  65. Sankaran, S., K.K.O.: Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Device Lett., 26(7), 492–494 (2005)

    Google Scholar 

  66. Orner, B.A., Liu, Q., Johnson, J., Rassell, R., Liu, X., Joseph, A., Gaucher, B., Sheridan, D.: p-i-n diodes for monolithic millimeter wave BiCMOS Applications. In: International SiGe Technology and Device Meeting, pp. 1–2 (2006)

    Google Scholar 

  67. Motoyoshi, M.: Through-Silicon via (TSV). Proc. IEEE 97(1), 43–48 (2009)

    Article  Google Scholar 

  68. Katti, G., Stucchi, M., De Meyer, K., Dehaene, W.: Electrical modeling and characterization of through silicon via for three-dimensional ICs. IEEE Trans. Electron Devices 57(1), 256–262 (2010)

    Article  Google Scholar 

  69. Bleiker, S.J., Fischer, A.C., Shah, U., Somjit, N., Haraldsson, T., Roxhed, N., Oberhammer, J., Stemme, G., Niklaus, F.: High-aspect-ratio through silicon vias for high-frequency application fabricated by magnetic assembly of gold-coated nickel wires. IEEE Trans. Compon. Packag. Manuf. Technol., 5(1), 21–27 (2015)

    Google Scholar 

  70. Hu, S., Wang, L., Xiong, Y.Z., Lim, T.G., Zhang, B., Shi, J., Yuan, X.: TSV technology for millimeter-wave and terahertz design and applications. IEEE Trans. Compon. Packag. Manuf. Technol., 1(2), 260–267 (2011)

    Google Scholar 

  71. Hu, S., Wang, L., Xiong, Y.Z., Shi, J., Zhang, B., Zhao, D., Lim, T.G., Yuan, X.: Millimeter-wave/THz passive components design using through silicon via (TSV) technology. In: Electronic Components and Technology Conference, pp. 520–523 (2010)

    Google Scholar 

  72. Chen, C.C., Tzuang, C.K.C.: Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits. IEEE Trans. Microw. Theory Tech. 52(6), 1637–1647 (2004)

    Article  Google Scholar 

  73. Gianesello, F., Gloria, D., Raynaud, C., Montusclat, S., Boret, S., Cĺement’, C., Tinella, C., Benech, P., Fournier, J.M., Dambrine, G.: State of the art integrated millimeter wave passive components and circuits in advanced thin SOI CMOS technology on high resistivity substrate. In: Proceedings—IEEE International SOI Conference, vol. 2005, pp. 52–53 (2005)

    Google Scholar 

  74. Haydl, W.H.: On the use of vias in conductor-backed coplanar circuits. IEEE Trans. Microw. Theory Tech. 50(6), 1571–1577 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaco du Preez .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

du Preez, J., Sinha, S. (2017). Technologies for Millimeter-Wave Power Amplifiers. In: Millimeter-Wave Power Amplifiers. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62166-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62166-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62165-4

  • Online ISBN: 978-3-319-62166-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics