Skip to main content

Numerical Investigations of the Jaxa High-Lift Configuration Standard Model with MFlow Solver

  • Chapter
  • First Online:
Numerical Simulation of the Aerodynamics of High-Lift Configurations

Abstract

Numerical investigations of the Jaxa high-lift configuration Standard Model from the 3rd AIAA CFD High Lift Prediction Workshop are performed with the in-house solver MFlow. The solver is based on a cell-centered, finite-volume method and is capable of handling various element types. Hybrid grids provided by the committee are used in the simulations. The performance of massively parallel computing and force/moment predictions are the two emphases of this chapter. The speedup rate of parallel computations is satisfactory, only deviating obviously from the theoretical rate for computations on 3,200 or more processors. The efficiency of parallel computations remains greater than 75%, even for computation on 6,400 processors. The force and moment prediction is then analyzed in detail. The initialization of the flow field plays an important role in the predictions of high-lift configurations. The simulation initiated with a converged flow field obtained at a lower angle of attack achieves better agreement with experiment compared with predictions initiated with freestream values, in terms of a larger maximum-lift coefficient. The drag-and-pitching-moment prediction is also improved. The solver shows good agreement with experiment at lower angles of attack, but more attention is needed at angles of attack near and beyond stall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data available online at https://hiliftpw.larc.nasa.gov/Workshop3/testcases.html.

  2. 2.

    Mesh available online at ftp://hiliftpw-ftp.larc.nasa.gov/outgoing/HiLiftPW3/JSM_Grids/Committee_Grids/E-JSM_UnstrMixed_ANSA.

  3. 3.

    The formulation can be found on https://turbmodels.larc.nasa.gov/spalart.html.

  4. 4.

    Presentations are available at https://hiliftpw.larc.nasa.gov/Workshop3/presentations.html.

Abbreviations

\(\alpha \) :

=  angle of attack

\(c_{ref }\) :

=  mean aerodynamic chord

Ma :

=  Mach number

\(Re_{c}\) :

=  Reynolds number based on \(c_{ref}\)

\(T_{\infty }\) :

=  free stream temperature

\(P_{\infty }\) :

=  free stream static pressure

\(\eta \) :

=  fraction of wing span

\(C_{L }\) :

=  lift coefficient

\(C_{{L}\_{max}}\) :

=  maximum value of lift coefficient

\(C_{D }\) :

=  drag coefficient

\(C_{M }\) :

=  pitching-moment coefficient

\(C_{p }\) :

=  pressure coefficient

\(C_{f }\) :

=  skin-friction coefficient

\(C_{fx }\) :

=  streamwise component of skin-friction coefficient

References

  1. van Dam, C.P.: The aerodynamic design of multi-element high-lift systems for transport airplanes. Prog. Aerosp. Sci 38(2), 101–144 (2002). https://doi.org/10.1016/S0376-0421(02)00002-7

  2. Rumsey, C.L., Ying, S.X.: Prediction of high-lift: review of present CFD capability. Prog. Aerosp. Sci. 38(2), 145–180 (2002). https://doi.org/10.1016/S0376-0421(02)00003-9

    Article  Google Scholar 

  3. Rumsey, C.L., Long, M., Stuever, R.A., Wayman, T.R.: Summary of the First AIAA CFD High-lift Prediction Workshop, 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0939, Jan 2011

    Google Scholar 

  4. Long, M., Mavriplis, D.: NSU3D Results for the First AIAA High-lift Prediction Workshop, 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0863, Jan 2011

    Google Scholar 

  5. Park, M.A., Lee-Rausch, E.M., Rumsey, C.L.: FUN3D and CFL3D Computations for the First High-Lift Prediction Workshop, 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0936, Jan 2011

    Google Scholar 

  6. Crippa, S., Wilkendingy, S.M., Rudnik, R.: DLR Contribution to the First High-lift Prediction Workshop, 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-938, Jan 2011

    Google Scholar 

  7. Sclafani, A.J., Slotnick, J.P., Vassberg, J.C., Pulliam, T.H., Lee, H.C.: OVERFLOW Analysis of the NASA Trap Wing Model from the First High-lift Prediction Workshop, 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-866, Jan 2011

    Google Scholar 

  8. Johnson, P.L., Jones, K.M., Madson, M.D.: Experimental investigation of a simplified 3D high-lift configuration in support of CFD validation. In: 18th Applied Aerodynamics Conference, AIAA Paper 2000-4217, Aug 2000

    Google Scholar 

  9. Hannon, J.A., Washburn, A.E., Jenkins, L.N., Watson, R.D.: Trapezoidal wing experimental repeatability and velocity profiles in the 14- by 22-foot subsonic tunnel (Invited). In: 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012-0706, Jan 2012

    Google Scholar 

  10. Rumsey, C.L., Slotnick, J.P., Long, M., Stuever, R.A., Wayman, T.R.: Summary of the first AIAA CFD high-lift prediction workshop. J. Aircr. 48(6), 2068–2079 (2011). https://doi.org/10.2514/1.C031447

    Article  Google Scholar 

  11. Rumsey, C.L., Slotnick, J.P.: Overview and summary of the second AIAA high-lift prediction workshop. J. Aircr. 52(4), 1006–1025 (2015)

    Article  Google Scholar 

  12. Murayama, M., Yamamoto, K., Ito, Y., Hirai, T., Tanaka, K.: Japan aerospace exploration agency studies for the second high-lift prediction workshop. J. Aircr. 52(4), 1026–1041 (2015)

    Article  Google Scholar 

  13. Chen, J.T., Zhang, Y.B., Zhou, N.C., Deng, Y.Q.: Numerical investigations of the high-lift configuration with MFlow solver. J. Aircr. 52(4), 1051–1062 (2015)

    Article  Google Scholar 

  14. Mavriplis, D., Long, M., Lake, T., Langlois, M.: NSU3D results for the second AIAA high-lift prediction workshop. J. Aircr. 52(4), 1063–1081 (2015)

    Article  Google Scholar 

  15. Coder, J.G.: OVERFLOW analysis of the DLR-F11 high-lift configuration including transition modeling. J. Aircr. 52(4), 1082–1097 (2015)

    Article  Google Scholar 

  16. Lee-Rausch, E.M., Rumsey, C.L., Park, M.A.: Grid-adapted FUN3D computations for the second high-lift prediction workshop. J. Aircr. 52(4), 1098–1111 (2015)

    Article  Google Scholar 

  17. Escobar, J.A., Suarez, C.A., Silva, C., López, O.D., Velandia, J.S., Lara, C.A.: Detached-Eddy simulation of a wide-body commercial aircraft in high-lift configuration. J. Aircr. 52(4), 1112–1121 (2015)

    Article  Google Scholar 

  18. Blazek, J.: Computational Fluid Dynamics: Principles and Applications, pp. 1–4. Elsevier Science Ltd., Oxford (2001)

    MATH  Google Scholar 

  19. Ito, T., Yokokawa, Y., Ura, H., Kato, H., Mitsuo, K., Yamamoto, K.: High-lift device testing in JAXA 6.5M X 5.5M low-speed wind tunnel. In: AIAA Paper 2006-3643 (2006)

    Google Scholar 

  20. Yokokawa, Y., Murayama, M., Ito, T., Yamamoto, K.: Experiment and CFD of a high-lift configuration civil transport aircraft model. In: AIAA Paper 2006-3452 (2006)

    Google Scholar 

  21. Yokokawa, Y., Murayama, M., Uchida, H., Tanaka, K., Ito, T., Yamamoto, K.: Aerodynamic influence of a half-span model installation for high-lift configuration experiment. In: 48th AIAA Aerospace Sciences Meeting, AIAA paper 2010-684, Jan 2010

    Google Scholar 

  22. Diskin, B., Thomas, J. L.: Comparison of node-centered and cell-centered unstructured finite volume discretizations: inviscid fluxes. AIAA J. 49(4), 836–854 (2011). https://doi.org/10.2514/1.J050897

    Article  Google Scholar 

  23. Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady-state solutions. In: 31st Aerospace Sciences Meeting, AIAA Paper 1993-0880, Jan 1993

    Google Scholar 

  24. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995). https://doi.org/10.2514/3.12946

    Article  Google Scholar 

  25. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1992-0439, Jan 1992. https://doi.org/10.2514/6.1992-439

  26. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  27. Sheke, S., Kalyan, W.: Parallel multigrid solver for Navier-Stokes equation using OpenMPI. Int. J. Comput. Sci. Trends Technol. 3(5), 131–134 (2015)

    Google Scholar 

  28. Berger, M.J., Aftosmis, M.J., Marshall, D.D.: Performance of a new CFD Flow solver using a hybrid programming paradigm. J. Parallel Distrib. Comput. 65(4), 414–423 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaobing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Zhang, J., Tang, J., Zhang, Y. (2018). Numerical Investigations of the Jaxa High-Lift Configuration Standard Model with MFlow Solver. In: López Mejia, O., Escobar Gomez, J. (eds) Numerical Simulation of the Aerodynamics of High-Lift Configurations. Springer, Cham. https://doi.org/10.1007/978-3-319-62136-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62136-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62135-7

  • Online ISBN: 978-3-319-62136-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics