\(\delta \)-Greedy t-spanner

  • Gali Bar-On
  • Paz Carmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


We introduce a new geometric spanner, \(\delta \)-Greedy, whose construction is based on a generalization of the known Path-Greedy and Gap-Greedy spanners. The \(\delta \)-Greedy spanner combines the most desirable properties of geometric spanners both in theory and in practice. More specifically, it has the same theoretical and practical properties as the Path-Greedy spanner: a natural definition, small degree, linear number of edges, low weight, and strong \((1+\varepsilon )\)-spanner for every \(\varepsilon >0\). The \(\delta \)-Greedy algorithm is an improvement over the Path-Greedy algorithm with respect to the number of shortest path queries and hence with respect to its construction time. We show how to construct such a spanner for a set of n points in the plane in \(O(n^2 \log n)\) time.

The \(\delta \)-Greedy spanner has an additional parameter, \(\delta \), which indicates how close it is to the Path-Greedy spanner on the account of the number of shortest path queries. For \(\delta = t\) the output spanner is identical to the Path-Greedy spanner, while the number of shortest path queries is, in practice, linear.

Finally, we show that for a set of n points placed independently at random in a unit square the expected construction time of the \(\delta \)-Greedy algorithm is \(O(n \log n)\). Our analysis indicates that the \(\delta \)-Greedy spanner gives the best results among the known spanners of expected \(O(n \log n)\) time for random point sets. Moreover, analysis implies that by setting \(\delta = t\), the \(\delta \)-Greedy algorithm provides a spanner identical to the Path-Greedy spanner in expected \(O(n \log n)\) time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Computing the greedy spanner in linear space. Algorithmica 73(3), 589–606 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Distribution-sensitive construction of the greedy spanner. Algorithmica, 1–23 (2016)Google Scholar
  3. 3.
    Arya, S., Mount, D.M., Smid, M.H.M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In FOCS, pp. 703–712 (1994)Google Scholar
  4. 4.
    Bar-On, G., Carmi, P.: \(\delta \)-greedy t-spanner. CoRR, abs/1702.05900 (2017)Google Scholar
  5. 5.
    Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy spanner in near-quadratic time. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 390–401. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69903-3_35 CrossRefGoogle Scholar
  6. 6.
    Callahan, P.B.: Optimal parallel all-nearest-neighbors using the well-separated pair decomposition. In: FOCS, pp. 332–340 (1993)Google Scholar
  7. 7.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multi-dimensional point-sets with applications to k-nearest-neighbors and n-body potential fields. In: STOC, pp. 546–556 (1992)Google Scholar
  8. 8.
    Chandra, B.: Constructing sparse spanners for most graphs in higher dimensions. Inf. Process. Lett. 51(6), pp. 289–294 (1994)Google Scholar
  9. 9.
    Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Int. J. Comp. Geom. and Applic. 5, 125–144 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In STOC, pp. 56–65 (1987)Google Scholar
  11. 11.
    Das, G., Heffernan, P.J., Narasimhan, G.: Optimally sparse spanners in 3-dimensional Euclidean space. In SoCG, pp. 53–62 (1993)Google Scholar
  12. 12.
    Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comp. Geom. and Applic. 7(4), 297–315 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 556–567. Springer, Heidelberg (2005). doi: 10.1007/11561071_50 CrossRefGoogle Scholar
  14. 14.
    Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners: a running time comparison. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 270–284. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72845-0_21 CrossRefGoogle Scholar
  15. 15.
    Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. ACM Journal of Experimental Algorithmics 14 (2009)Google Scholar
  16. 16.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Keil, J.M.: Approximating the complete euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988). doi: 10.1007/3-540-19487-8_23 CrossRefGoogle Scholar
  18. 18.
    Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  20. 20.
    Soares, J.: Approximating Euclidean distances by small degree graphs. Discrete & Computational Geometry 11(2), 213–233 (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceBen-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations