Effectiveness of Local Search for Art Gallery Problems

  • Sayan Bandyapadhyay
  • Aniket Basu Roy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


We study the variant of the art gallery problem where we are given an orthogonal polygon P (possibly with holes) and we want to guard it with the minimum number of sliding cameras. A sliding camera travels back and forth along an orthogonal line segment s in P and a point p in P is said to be visible to the segment s if the perpendicular from p onto s lies in P. Our objective is to compute a set containing the minimum number of sliding cameras (orthogonal segments) such that every point in P is visible to some sliding camera. We study the following two variants of this problem: Minimum Sliding Cameras problem, where the cameras can slide along either horizontal or vertical segments in P, and Minimum Horizontal Sliding Cameras problem, where the cameras are restricted to slide along horizontal segments only. In this work, we design local search PTASes for these two problems improving over the existing constant factor approximation algorithms. We note that in the first problem, the polygons are not allowed to contain holes. In fact, there is a family of polygons with holes for which the performance of our local search algorithm is arbitrarily bad.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aschner, R., Katz, M.J., Morgenstern, G., Yuditsky, Y.: Approximation schemes for covering and packing. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 89–100. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36065-7_10 CrossRefGoogle Scholar
  3. 3.
    Ashok, P., Basu Roy, A.., Govindarajan, S.: Local search strikes again: PTAS for variants of geometric covering and packing. In COCOON (2017)Google Scholar
  4. 4.
    Bandyapadhyay, S., Varadarajan, K.R.: On variants of k-means clustering. In SoCG 2016, pp. 14: 1–14: 15 (2016)Google Scholar
  5. 5.
    Bhattiprolu, V., Har-Peled, S.: Separating a voronoi diagram via local search. In: SoCG 2016, pp. 18: 1–18: 16 (2016)Google Scholar
  6. 6.
    Biedl, T.C., Chan, T.M., Lee, S., Mehrabi, S., Montecchiani, F., Vosoughpour, H.: On guarding orthogonal polygons with sliding cameras. CoRR, abs/1604.07099 (2016)Google Scholar
  7. 7.
    Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. DCG 48(2), 373–392 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cohen-Addad, V., Mathieu, C.: Effectiveness of local search for geometric optimization. In: SoCG 2015, pp. 329–343 (2015)Google Scholar
  9. 9.
    Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. In: FOCS 2016, pp. 353–364 (2016)Google Scholar
  10. 10.
    Berg, M., Durocher, S., Mehrabi, S.: Guarding monotone art galleries with sliding cameras in linear time. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 113–125. Springer, Cham (2014). doi: 10.1007/978-3-319-12691-3_10 Google Scholar
  11. 11.
    Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras: algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40313-2_29 CrossRefGoogle Scholar
  12. 12.
    Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5d terrain guarding problem: Discretization, optimal solutions, and PTAS. JoCG 7(1),256–284 (2016)Google Scholar
  13. 13.
    Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for k-means in doubling metrics. In FOCS 2016, pp. 365–374 (2016)Google Scholar
  14. 14.
    Govindarajan, S., Raman, R., Ray, S., Basu Roy, A.: Packing and covering with non-piercing regions. In ESA 2016, pp. 47: 1–47: 17 (2016)Google Scholar
  15. 15.
    Gupta, A., Tangwongsan, K.: Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554 (2008)Google Scholar
  16. 16.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. Comput. Geometry Appl. 21(2), 241–250 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kirkpatrick, D.G.: An o(lg lg opt)-approximation algorithm for multi-guarding galleries. DCG 53(2), 327–343 (2015)Google Scholar
  19. 19.
    Krohn, E., Gibson, M., Kanade, G., Varadarajan, K.: Guarding terrains via local search. Journal of Computational Geometry 5(1), 168–178 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete & Computational Geometry 44(4), 883–895 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press Inc, New York (1987). ISBN 0-19-503965-3Google Scholar
  22. 22.
    O’Rourke, J.: Computational geometry column 52. SIGACT News 43(1), 82–85 (2012). ISSN 0163–5700Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer ScienceUniversity of IowaIowa CityUSA
  2. 2.Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations