An Improved Algorithm for Diameter-Optimally Augmenting Paths in a Metric Space

  • Haitao WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


Let P be a path graph of n vertices embedded in a metric space. We consider the problem of adding a new edge to P such that the diameter of the resulting graph is minimized. Previously (in ICALP 2015) the problem was solved in \(O(n\log ^3 n)\) time. In this paper, based on new algorithmic techniques and observations, we present an \(O(n\log n)\) time algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. Journal of Graph Theory 35, 161–172 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000). doi: 10.1007/10719839_9 CrossRefGoogle Scholar
  3. 3.
    Bilò, D., Gualà, L., Proietti, G.: Improved approximability and non-approximability results for graph diameter decreasing problems. Theoretical Computer Science 417, 12–22 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carufel, J.L.D., Grimm, C., Maheshwari, A., Smid, M.: Minimizing the continuous diameter when augmenting paths and cycles with shortcuts. In: Proc. of the 15th Scandinavian Workshop on Algorithm Theory (SWAT), pp. 27:1–27:14 (2016)Google Scholar
  5. 5.
    Carufel, J.L.D., Grimm, C., Schirra, S., Smid, M.: Minimizing the continuous diameter when augmenting a tree with a shortcut. arXiv:1612.01370 (2016)
  6. 6.
    Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13731-0_39 CrossRefGoogle Scholar
  7. 7.
    Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to minimize the diameter. Algorithmica 72, 995–1010 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Frederickson, G., Johnson, D.: Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing 13(1), 14–30 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frederickson, G., Johnson, D.: Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. Journal of Algorithms 4(1), 61–80 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gao, Y., Hare, D., Nastos, J.: The parametric complexity of graph diameter augmentation. Discrete Applied Mathematics 161, 1626–1631 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast algorithms for diameter-optimally augmenting paths. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 678–688. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47672-7_55 CrossRefGoogle Scholar
  12. 12.
    Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13, 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ishii, T.: Augmenting outerplanar graphs to meet diameter requirements. Journal of Graph Theory 74, 392–416 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, C.L., McCormick, S., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operations Research Letters 11, 303–308 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. Journal of the ACM 30(4), 852–865 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schoone, A., Bodlaender, H., Leeuwen, J.V.: Diameter increase caused by edge deletion. Journal of Graph Theory 11, 409–427 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, H.: An improved algorithm for diameter-optimally augmenting paths in a metric space. arXiv:1608.04456 (2016)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUtah State UniversityLoganUSA

Personalised recommendations