Advertisement

Busy Time Scheduling on a Bounded Number of Machines (Extended Abstract)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)

Abstract

In this paper we consider a basic scheduling problem called the busy time scheduling problem - given n jobs, with release times \(r_j\), deadlines \(d_j\) and processing times \(p_j\), and m machines, where each machine can run up to g jobs concurrently, our goal is to find a schedule to minimize the sum of the “on” times for the machines. We develop the first correct constant factor online competitive algorithm for the case when g is unbounded, and give a \(O(\log P)\) approximation for general g, where P is the ratio of maximum to minimum processing time. When g is bounded, all prior busy time approximation algorithms use an unbounded number of machines; note it is NP-hard just to test feasibility on fixed m machines. For this problem we give both offline and online (requiring “lookahead”) algorithms, which are O(1) competitive in busy time and \(O(\log P)\) competitive in number of machines used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alicherry, M., Bhatia, R.: Line system design and a generalized coloring problem. In: Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 19–30. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39658-1_5 CrossRefGoogle Scholar
  2. 2.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 3:1–3:39 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brucker, P.: Scheduling algorithms. Springer (2007)Google Scholar
  4. 4.
    Chang, J., Gabow, H., Khuller, S.: A model for minimizing active processor time. Algorithmica 70(3), 368–405 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chang, J., Khuller, S., Mukherjee, K.: Lp rounding and combinatorial algorithms for minimizing active and busy time. In: SPAA, pp. 118–127. ACM (2014)Google Scholar
  6. 6.
    Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling jobs with interval constraints. In: FOCS, pp. 81–90. IEEE (2004)Google Scholar
  7. 7.
    Fang, X., Gao, H., Li, J., Li, Y.: Application-aware data collection in wireless sensor networks. In: Proceedings of INFOCOM (2013)Google Scholar
  8. 8.
    Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T., Zaks, S.: Minimizing total busy time in parallel scheduling with application to optical networks. In: IPDPS, pp. 1–12 (2009)Google Scholar
  9. 9.
    Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the traffic grooming problem with respect to adms and oadms. In: Proceedings of Euro-Par, pp. 920–929 (2008)Google Scholar
  10. 10.
    Fong, C.K.K., Li, M., Li, S., Poon, S.-H., Wu, W., Zhao, Y.: Scheduling tasks to minimize active time on a processor with unlimited capacity. In: MAPSP (2015)Google Scholar
  11. 11.
    Khandekar, R., Schieber, B., Shachnai, H., Tamir, T.: Minimizing busy time in multiple machine real-time scheduling. In: FSTTCS, pp. 169–180 (2010)Google Scholar
  12. 12.
    Koehler, F., Khuller, S.: Optimal batch schedules for parallel machines. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 475–486. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40104-6_41 CrossRefGoogle Scholar
  13. 13.
    Kumar, V., Rudra, A.: Approximation algorithms for wavelength assignment. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 152–163. Springer, Heidelberg (2005). doi: 10.1007/11590156_12 CrossRefGoogle Scholar
  14. 14.
    López-Ortiz, A., Quimper, C.-G.: A fast algorithm for multi-machine scheduling problems with jobs of equal processing times. In: STACS, pp. 380–391 (2011)Google Scholar
  15. 15.
    Mertzios, G.B., Shalom, M., Voloshin, A., Wong, Prudence W.H. Zaks, S.: Optimizing busy time on parallel machines. In: IPDPS, pp. 238–248 (2012)Google Scholar
  16. 16.
    Ren, R., Tang, X.: Online flexible job scheduling for minimum span. In: SPAA 2017. (to Appear)Google Scholar
  17. 17.
    Shalom, M., Voloshin, A., Wong, P.W.H., Yung, F.C.C., Zaks, S.: Online optimization of busy time on parallel machines. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 448–460. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29952-0_43 CrossRefGoogle Scholar
  18. 18.
    Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph coloring. In: SODA, pp. 830–831 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsMITCambridgeUSA
  2. 2.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations