Posimodular Function Optimization

  • Magnús M. Halldórsson
  • Toshimasa IshiiEmail author
  • Kazuhisa Makino
  • Kenjiro Takazawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


A function Open image in new window on a finite set V is posimodular if \(f(X)+f(Y) \ge f(X\setminus Y)+f(Y\setminus X)\), for all \(X,Y\subseteq V\). Posimodular functions often arise in combinatorial optimization such as undirected cut functions. We consider the problem of finding a nonempty subset X minimizing f(X), when the posimodular function f is given by oracle access.

We show that posimodular function minimization requires exponential time, contrasting with the polynomial solvability of submodular function minimization that forms another generalization of cut functions. On the other hand, the problem is fixed-parameter tractable in terms of the size of the image (or range) of f.

In more detail, we show that \(\varOmega (2^{0.3219n} T_f)\) time is necessary and \(O(2^{0.92n}T_f)\) sufficient, where \(T_f\) denotes the time for one function evaluation. When the image of f is \(D=\{0,1,\ldots ,d\}\), \(O(2^{1.271d}nT_f)\) time is sufficient and \(\varOmega (2^{0.1609d}T_f)\) necessary. We can also generate all sets minimizing f in time \(2^{O(d)} n^2 T_f\).

Finally, we also consider the problem of maximizing a given posimodular function, showing that it requires at least \(2^{n-1}T_f\) time in general, while it has time complexity \(\varTheta (n^{d-1}T_f)\) when \(D=\{0,1,\ldots , d\}\) is the image of f, for integer d.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arata, K., Iwata, S., Makino, K., Fujishige, S.: Locating sources to meet flow demands in undirected networks. Journal of Algorithms 42, 54–68 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816 (2011)Google Scholar
  3. 3.
  4. 4.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40, 1133–1153 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5(1), 25–53 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fujishige, S.: A laminarity property of the polyhedron described by a weakly posi-modular set function. Discrete Applied Mathematics 100(1–2), 123–126 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ishii, T., Makino, K.: Posi-modular systems with modulotone requirements under permutation constraints. Discrete Mathematics, Algorithms and Applications 2(1), 61–76 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ito, H., Makino, K., Arata, K., Honami, S., Itatsu, Y., Fujishige, S.: Source location problem with flow requirements in directed networks. Optimization Methods and Software 18, 427–435 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lokshtanov, D., Marx, D.: Clustering with local restrictions. Information and Computation 222, 278–292 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nagamochi, H.: Graph algorithms for network connectivity problems. Journal of the Operations Research Society of Japan 47(4), 199–223 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Nagamochi, H.: Minimum degree orderings. Algorithmica 56(1), 17–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nagamochi, H., Ibaraki, T.: A note on minimizing submodular functions. Inf. Process. Lett. 67(5), 239–244 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nagamochi, H., Ibaraki, T.: Polyhedral structure of submodular and posi-modular systems. Discrete Applied Mathematics 107(1–3), 165–189 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nagamochi, H., Shiraki, T., Ibaraki, T.: Augmenting a submodular and posi-modular set function by a multigraph. Journal of Combinatorial Optimization 5(2), 175–212 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Orlin, J.: A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming 118(2), 237–251 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sakashita, M., Makino, K., Nagamochi, H., Fujishige, S.: Minimum transversals in posi-modular systems. SIAM Journal on Discrete Mathematics 23, 858–871 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Approximation, randomization, and combinatorial optimization, pp. 207–218 (2004)Google Scholar
  19. 19.
    Tamura, H., Sugawara, H., Sengoku, M., Shinoda, S.: Plural cover problem on undirected flow networks. IEICE Transactions J81–A, 863–869 (1998). (in Japanese)Google Scholar
  20. 20.
    van den Heuvel, J., Johnson, M.: The external network problem with edge- or arc-connectivity requirements. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004. LNCS, vol. 3405, pp. 114–126. Springer, Heidelberg (2005). doi: 10.1007/11527954_11 CrossRefGoogle Scholar
  21. 21.
    Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Journal of Computer System Sciences 35, 96–144 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Magnús M. Halldórsson
    • 1
  • Toshimasa Ishii
    • 2
    Email author
  • Kazuhisa Makino
    • 3
  • Kenjiro Takazawa
    • 4
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Graduate School of EconomicsHokkaido UniversitySapporoJapan
  3. 3.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  4. 4.Faculty of Science and EngineeringHosei UniversityFujimiJapan

Personalised recommendations