Posimodular Function Optimization
Abstract
A function Open image in new window on a finite set V is posimodular if \(f(X)+f(Y) \ge f(X\setminus Y)+f(Y\setminus X)\), for all \(X,Y\subseteq V\). Posimodular functions often arise in combinatorial optimization such as undirected cut functions. We consider the problem of finding a nonempty subset X minimizing f(X), when the posimodular function f is given by oracle access.
We show that posimodular function minimization requires exponential time, contrasting with the polynomial solvability of submodular function minimization that forms another generalization of cut functions. On the other hand, the problem is fixed-parameter tractable in terms of the size of the image (or range) of f.
In more detail, we show that \(\varOmega (2^{0.3219n} T_f)\) time is necessary and \(O(2^{0.92n}T_f)\) sufficient, where \(T_f\) denotes the time for one function evaluation. When the image of f is \(D=\{0,1,\ldots ,d\}\), \(O(2^{1.271d}nT_f)\) time is sufficient and \(\varOmega (2^{0.1609d}T_f)\) necessary. We can also generate all sets minimizing f in time \(2^{O(d)} n^2 T_f\).
Finally, we also consider the problem of maximizing a given posimodular function, showing that it requires at least \(2^{n-1}T_f\) time in general, while it has time complexity \(\varTheta (n^{d-1}T_f)\) when \(D=\{0,1,\ldots , d\}\) is the image of f, for integer d.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Arata, K., Iwata, S., Makino, K., Fujishige, S.: Locating sources to meet flow demands in undirected networks. Journal of Algorithms 42, 54–68 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816 (2011)Google Scholar
- 3.Egres open problem list. http://lemon.cs.elte.hu/egres/open/Maximizing_a_skew-supermodular_function
- 4.Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40, 1133–1153 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5(1), 25–53 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Fujishige, S.: A laminarity property of the polyhedron described by a weakly posi-modular set function. Discrete Applied Mathematics 100(1–2), 123–126 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Ishii, T., Makino, K.: Posi-modular systems with modulotone requirements under permutation constraints. Discrete Mathematics, Algorithms and Applications 2(1), 61–76 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Ito, H., Makino, K., Arata, K., Honami, S., Itatsu, Y., Fujishige, S.: Source location problem with flow requirements in directed networks. Optimization Methods and Software 18, 427–435 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Lokshtanov, D., Marx, D.: Clustering with local restrictions. Information and Computation 222, 278–292 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Nagamochi, H.: Graph algorithms for network connectivity problems. Journal of the Operations Research Society of Japan 47(4), 199–223 (2004)MathSciNetzbMATHGoogle Scholar
- 12.Nagamochi, H.: Minimum degree orderings. Algorithmica 56(1), 17–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Nagamochi, H., Ibaraki, T.: A note on minimizing submodular functions. Inf. Process. Lett. 67(5), 239–244 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Nagamochi, H., Ibaraki, T.: Polyhedral structure of submodular and posi-modular systems. Discrete Applied Mathematics 107(1–3), 165–189 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Nagamochi, H., Shiraki, T., Ibaraki, T.: Augmenting a submodular and posi-modular set function by a multigraph. Journal of Combinatorial Optimization 5(2), 175–212 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Orlin, J.: A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming 118(2), 237–251 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Sakashita, M., Makino, K., Nagamochi, H., Fujishige, S.: Minimum transversals in posi-modular systems. SIAM Journal on Discrete Mathematics 23, 858–871 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Approximation, randomization, and combinatorial optimization, pp. 207–218 (2004)Google Scholar
- 19.Tamura, H., Sugawara, H., Sengoku, M., Shinoda, S.: Plural cover problem on undirected flow networks. IEICE Transactions J81–A, 863–869 (1998). (in Japanese)Google Scholar
- 20.van den Heuvel, J., Johnson, M.: The external network problem with edge- or arc-connectivity requirements. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004. LNCS, vol. 3405, pp. 114–126. Springer, Heidelberg (2005). doi: 10.1007/11527954_11 CrossRefGoogle Scholar
- 21.Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Journal of Computer System Sciences 35, 96–144 (1987)MathSciNetCrossRefzbMATHGoogle Scholar