Advertisement

Split Packing: Packing Circles into Triangles with Optimal Worst-Case Density

  • Sándor P. Fekete
  • Sebastian Morr
  • Christian Scheffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)

Abstract

In the circle packing problem for triangular containers, one asks whether a given set of circles can be packed into a given triangle. Packing problems like this have been shown to be \(\mathsf {NP}\)-hard. In this paper, we present a new sufficient condition for packing circles into any right or obtuse triangle using only the circles’ combined area: It is possible to pack any circle instance whose combined area does not exceed the triangle’s incircle. This area condition is tight, in the sense that for any larger area, there are instances which cannot be packed.

A similar result for square containers has been established earlier this year, using the versatile, divide-and-conquer-based Split Packing algorithm. In this paper, we present a generalized, weighted version of this approach, allowing us to construct packings of circles into asymmetric triangles. It seems crucial to the success of these results that Split Packing does not depend on an orthogonal subdivision structure. Beside realizing all packings below the critical density bound, our algorithm can also be used as a constant-factor approximation algorithm when looking for the smallest non-acute triangle of a given side ratio in which a given set of circles can be packed.

An interactive visualization of the Split Packing approach and other related material can be found at https://morr.cc/split-packing/.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brubach, B.: Improved bound for online square-into-square packing. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 47–58. Springer, Cham (2015). doi: 10.1007/978-3-319-18263-6_5 Google Scholar
  2. 2.
    Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. European Journal of Operational Research 191(3), 786–802 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Demaine, E.D., Fekte, S.P., Lang, R.J.: Circle packing for origami design is hard. In: 5th International Conference on Origami in Science, Mathematics and Education, pp. 609–626. AK Peters/CRC Press (2011)Google Scholar
  4. 4.
    Fekete, S.P., Hoffmann, H.-F.: Online square-into-square packing. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 126–141. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40328-6_10 CrossRefGoogle Scholar
  5. 5.
    Fekete, S.P., Hoffmann, H.-F.: Online Square-into-Square Packing. Algorithmica 77(3), 867–901 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fekete, S.P., Morr, S., Scheffer, C.: Split Packing: Algorithms for Packing Circles with Optimal Worst-Case Density. CoRR abs/1705.00924 (2017). http://arxiv.org/abs/1705.00924
  7. 7.
    Hifi, M., M’hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Advances in Operations Research Article ID 150624 (2009)Google Scholar
  8. 8.
    Hokama, P., Miyazawa, F.K., Schouery, R.C.S.: A bounded space algorithm for online circle packing. Information Processing Letters 116(5), 337–342 (2016). ISSN: 0020–0190MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lang, R.J.: A computational algorithm for origami design. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry (SoCG), pp. 98–105 (1996)Google Scholar
  10. 10.
    Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach. Discrete Applied Mathematics 122(1), 139–166 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Miyazawa, F.K., Pedrosa, L.L.C., Schouery, R.C.S., Sviridenko, M., Wakabayashi, Y.: Polynomial-time approximation schemes for circle packing problems. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 713–724. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44777-2_59 Google Scholar
  12. 12.
    Moon, J.W., Moser, L.: Some packing and covering theorems. In: Colloquium Mathematicae, vol. 17(1), pp. 103–110. Institute of Mathematics, Polish Academy of Sciences (1967)Google Scholar
  13. 13.
    Morr, S.: split packing: an algorithm for packing circles with optimal worst-case density. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 99–109 (2017)Google Scholar
  14. 14.
    Peikert, R., Würtz, D., Monagan, M., de Groot, C.: Packing circles in a square: A review and new results. In: Proceedings of the 15th IFIP Conference, pp. 45–54 (1992)Google Scholar
  15. 15.
    Specht, E.: Packomania (2015). http://www.packomania.com/
  16. 16.
    Sugihara, K., Sawai, M., Sano, H., Kim, D.-S., Kim, D.: Disk packing for the estimation of the size of a wire bundle. Japan Journal of Industrial and Applied Mathematics 21(3), 259–278 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle Packing in a Square. Springer, US (2007)Google Scholar
  18. 18.
    Wang, H., Huang, W., Zhang, Q., Xu, D.: An improved algorithm for the packing of unequal circles within a larger containing circle. European Journal of Operational Research 141(2), 440–453 (2002). ISSN: 0377–2217MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Würtz, D., Monagan, M., Peikert, R.: The history of packing circles in a square. Maple Technical Newsletter, pp. 35–42 (1994)Google Scholar
  20. 20.
    Yinfeng, X.: On the minimum distance determined by \(n(\le \)7) points in an isoscele right triangle. Acta Mathematicae Applicatae Sinica 12(2), 169–175 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sándor P. Fekete
    • 1
  • Sebastian Morr
    • 1
  • Christian Scheffer
    • 1
  1. 1.Department of Computer ScienceTU BraunschweigBraunschweigGermany

Personalised recommendations